|
Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph
M. V. Platonovaab, K. S. Ryadovkinab a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
Abstract:
We consider a continuous-time supercritical symmetric branching random walk on
a multidimensional graph with periodic particle generation sources.
A logarithmic asymptotic formula is obtained for the moments of
population sizes of particles at each vertex of the graph as t→∞.
Keywords:
branching random walk, periodic perturbation, evolution equation.
Received: 30.05.2021 Revised: 20.01.2022
Citation:
M. V. Platonova, K. S. Ryadovkin, “Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph”, Teor. Veroyatnost. i Primenen., 68:2 (2023), 277–300; Theory Probab. Appl., 68:2 (2023), 231–249
Linking options:
https://www.mathnet.ru/eng/tvp5503https://doi.org/10.4213/tvp5503 https://www.mathnet.ru/eng/tvp/v68/i2/p277
|
Statistics & downloads: |
Abstract page: | 244 | Full-text PDF : | 42 | References: | 46 | First page: | 6 |
|