Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 2, Pages 277–300
DOI: https://doi.org/10.4213/tvp5503
(Mi tvp5503)
 

Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph

M. V. Platonovaab, K. S. Ryadovkinab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
References:
Abstract: We consider a continuous-time supercritical symmetric branching random walk on a multidimensional graph with periodic particle generation sources. A logarithmic asymptotic formula is obtained for the moments of population sizes of particles at each vertex of the graph as t.
Keywords: branching random walk, periodic perturbation, evolution equation.
Funding agency Grant number
Gazprom Neft
Received: 30.05.2021
Revised: 20.01.2022
English version:
Theory of Probability and its Applications, 2023, Volume 68, Issue 2, Pages 231–249
DOI: https://doi.org/10.1137/S0040585X97T991386
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Platonova, K. S. Ryadovkin, “Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph”, Teor. Veroyatnost. i Primenen., 68:2 (2023), 277–300; Theory Probab. Appl., 68:2 (2023), 231–249
Citation in format AMSBIB
\Bibitem{PlaRya23}
\by M.~V.~Platonova, K.~S.~Ryadovkin
\paper Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 2
\pages 277--300
\mathnet{http://mi.mathnet.ru/tvp5503}
\crossref{https://doi.org/10.4213/tvp5503}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 2
\pages 231--249
\crossref{https://doi.org/10.1137/S0040585X97T991386}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85179366001}
Linking options:
  • https://www.mathnet.ru/eng/tvp5503
  • https://doi.org/10.4213/tvp5503
  • https://www.mathnet.ru/eng/tvp/v68/i2/p277
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :42
    References:46
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025