Abstract:
Let xεs be a diffusion process with the infinitesimal operator given by (3), and let pε(t,x,y) be the transition probability density of xεs. The aim of the article is to prove that the asymptotics of pε(t,x,y) has the form of (4) if t and the distance between x and y are sufficiently small. We calculate the principal term of the asymptotics and deduce recurrent formulas for the others.
Citation:
Yu. I. Kifer, “On the asymptotics of the transition probability density of processes with small diffusion”, Teor. Veroyatnost. i Primenen., 21:3 (1976), 527–536; Theory Probab. Appl., 21:3 (1977), 513–522
\Bibitem{Kif76}
\by Yu.~I.~Kifer
\paper On the asymptotics of the transition probability density of processes with small diffusion
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 3
\pages 527--536
\mathnet{http://mi.mathnet.ru/tvp3397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=431398}
\zmath{https://zbmath.org/?q=an:0367.60035}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 3
\pages 513--522
\crossref{https://doi.org/10.1137/1121063}
Linking options:
https://www.mathnet.ru/eng/tvp3397
https://www.mathnet.ru/eng/tvp/v21/i3/p527
This publication is cited in the following 16 articles:
Tobias Grafke, Tobias Schäfer, Eric Vanden‐Eijnden, “Sharp asymptotic estimates for expectations, probabilities, and mean first passage times in stochastic systems with small noise”, Comm Pure Appl Math, 77:4 (2024), 2268
Timo Schorlepp, Tobias Grafke, Rainer Grauer, “Gel'fand–Yaglom type equations for calculating fluctuations around instantons in stochastic systems”, J. Phys. A: Math. Theor., 54:23 (2021), 235003
Grégoire Ferré, Tobias Grafke, “Approximate Optimal Controls via Instanton Expansion for Low Temperature Free Energy Computation”, Multiscale Model. Simul., 19:3 (2021), 1310
Sergio Albeverio, Boubaker Smii, “Borel summation of the small time expansion of some SDE's driven by Gaussian white noise”, ASY, 114:3-4 (2019), 211
V. G. Danilov, “Nonsmooth Nonoscillating Exponential-type Asymptotics for Linear Parabolic PDE”, SIAM J. Math. Anal., 49:5 (2017), 3550
V. M. Khametov, “Asymptotics of the Solution to the Cauchy Problem for Linear Parabolic Equations of Second Order with Small Diffusion”, Math. Notes, 68:6 (2000), 775–789
Wendell H. Fleming, Shuenn-Jyi Sheu, “Asymptotics for the principal eigenvalue and eigenfunction of a nearly first-order operator with large potential”, Ann. Probab., 25:4 (1997)
F. Ledrappier, L.-S. Young, “Stability of Lyapunov exponents”, Ergod. Th. Dynam. Sys., 11:3 (1991), 469
S. M. Kozlov, A. L. Piatnitski, “Averaging on a background of vanishing viscosity”, Math. USSR-Sb., 70:1 (1991), 241–261
Keith D. Watling, Lecture Notes in Mathematics, 1325, Stochastic Mechanics and Stochastic Processes, 1988, 167
H. R. Jauslin, “A classification of Fokker-Planck models and the small and large noise asymptotics”, J Stat Phys, 40:1-2 (1985), 147
Robert Azencott, Lecture Notes in Mathematics, 1059, Séminaire de Probabilités XVIII 1982/83, 1984, 402
V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42
Yuri Kifer, “Stochastic stability of the topological pressure”, J. Anal. Math., 38:1 (1980), 255
Yuri Kifer, “On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles”, Journal of Differential Equations, 37:1 (1980), 108