Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1976, Volume 21, Issue 3, Pages 527–536 (Mi tvp3397)  

This article is cited in 16 scientific papers (total in 16 papers)

On the asymptotics of the transition probability density of processes with small diffusion

Yu. I. Kifer

Moscow
Abstract: Let xsε be a diffusion process with the infinitesimal operator given by (3), and let pε(t,x,y) be the transition probability density of xsε. The aim of the article is to prove that the asymptotics of pε(t,x,y) has the form of (4) if t and the distance between x and y are sufficiently small. We calculate the principal term of the asymptotics and deduce recurrent formulas for the others.
Received: 11.02.1975
English version:
Theory of Probability and its Applications, 1977, Volume 21, Issue 3, Pages 513–522
DOI: https://doi.org/10.1137/1121063
Bibliographic databases:
Language: Russian
Citation: Yu. I. Kifer, “On the asymptotics of the transition probability density of processes with small diffusion”, Teor. Veroyatnost. i Primenen., 21:3 (1976), 527–536; Theory Probab. Appl., 21:3 (1977), 513–522
Citation in format AMSBIB
\Bibitem{Kif76}
\by Yu.~I.~Kifer
\paper On the asymptotics of the transition probability density of processes with small diffusion
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 3
\pages 527--536
\mathnet{http://mi.mathnet.ru/tvp3397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=431398}
\zmath{https://zbmath.org/?q=an:0367.60035}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 3
\pages 513--522
\crossref{https://doi.org/10.1137/1121063}
Linking options:
  • https://www.mathnet.ru/eng/tvp3397
  • https://www.mathnet.ru/eng/tvp/v21/i3/p527
  • This publication is cited in the following 16 articles:
    1. Tobias Grafke, Tobias Schäfer, Eric Vanden‐Eijnden, “Sharp asymptotic estimates for expectations, probabilities, and mean first passage times in stochastic systems with small noise”, Comm Pure Appl Math, 77:4 (2024), 2268  crossref
    2. Timo Schorlepp, Tobias Grafke, Rainer Grauer, “Gel'fand–Yaglom type equations for calculating fluctuations around instantons in stochastic systems”, J. Phys. A: Math. Theor., 54:23 (2021), 235003  crossref
    3. Grégoire Ferré, Tobias Grafke, “Approximate Optimal Controls via Instanton Expansion for Low Temperature Free Energy Computation”, Multiscale Model. Simul., 19:3 (2021), 1310  crossref
    4. Sergio Albeverio, Boubaker Smii, “Borel summation of the small time expansion of some SDE's driven by Gaussian white noise”, ASY, 114:3-4 (2019), 211  crossref
    5. V. G. Danilov, “Nonsmooth Nonoscillating Exponential-type Asymptotics for Linear Parabolic PDE”, SIAM J. Math. Anal., 49:5 (2017), 3550  crossref
    6. V. M. Khametov, “Asymptotics of the Solution to the Cauchy Problem for Linear Parabolic Equations of Second Order with Small Diffusion”, Math. Notes, 68:6 (2000), 775–789  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Wendell H. Fleming, Shuenn-Jyi Sheu, “Asymptotics for the principal eigenvalue and eigenfunction of a nearly first-order operator with large potential”, Ann. Probab., 25:4 (1997)  crossref
    8. F. Ledrappier, L.-S. Young, “Stability of Lyapunov exponents”, Ergod. Th. Dynam. Sys., 11:3 (1991), 469  crossref
    9. S. M. Kozlov, A. L. Piatnitski, “Averaging on a background of vanishing viscosity”, Math. USSR-Sb., 70:1 (1991), 241–261  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    10. Keith D. Watling, Lecture Notes in Mathematics, 1325, Stochastic Mechanics and Stochastic Processes, 1988, 167  crossref
    11. Rémi Leandre, Lecture Notes in Mathematics, 1322, Stochastic Analysis, 1988, 109  crossref
    12. H. R. Jauslin, “A classification of Fokker-Planck models and the small and large noise asymptotics”, J Stat Phys, 40:1-2 (1985), 147  crossref
    13. Robert Azencott, Lecture Notes in Mathematics, 1059, Séminaire de Probabilités XVIII 1982/83, 1984, 402  crossref
    14. V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    15. Yuri Kifer, “Stochastic stability of the topological pressure”, J. Anal. Math., 38:1 (1980), 255  crossref
    16. Yuri Kifer, “On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles”, Journal of Differential Equations, 37:1 (1980), 108  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :108
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025