Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 70, Issue 1, Pages 241–261
DOI: https://doi.org/10.1070/SM1991v070n01ABEH002123
(Mi sm1144)
 

This article is cited in 7 scientific papers (total in 7 papers)

Averaging on a background of vanishing viscosity

S. M. Kozlova, A. L. Piatnitskib

a Moscow Engineering Building Institute
b P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: Elliptic equations of the form
(μaij(xε)xixj+ε1vi(xε)xi)uμ,ε(x)=0,uμ,ε|Ω=φ(x)
with periodic coefficients are considered; μ and ε are small parameters. For potential fields v(y) and constants aij=δij, the asymptotic behavior as μ0 of the coefficients of the averaged operator (which is customarily also called the effective diffusion) is studied. It is shown that as μ0 the effective diffusion σ(μ)=σij(μ) decays exponentially, and the limit limμ0μlnσ(μ) is found. Sufficient conditions are found for the existence of a limit operator as μ and ε tend to 0 simultaneously. The structure of this operator depends on the symmetry reserve of the coefficients aij(y) and vi(y); in particular, it may decompose into independent operators in subspaces of lower dimension.
Received: 09.03.1989
Bibliographic databases:
UDC: 517.9
MSC: 35J25
Language: English
Original paper language: Russian
Citation: S. M. Kozlov, A. L. Piatnitski, “Averaging on a background of vanishing viscosity”, Math. USSR-Sb., 70:1 (1991), 241–261
Citation in format AMSBIB
\Bibitem{KozPia90}
\by S.~M.~Kozlov, A.~L.~Piatnitski
\paper Averaging on a~background of vanishing viscosity
\jour Math. USSR-Sb.
\yr 1991
\vol 70
\issue 1
\pages 241--261
\mathnet{http://mi.mathnet.ru/eng/sm1144}
\crossref{https://doi.org/10.1070/SM1991v070n01ABEH002123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1072299}
\zmath{https://zbmath.org/?q=an:0709.35007|0732.35006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..70..241K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GG78300015}
Linking options:
  • https://www.mathnet.ru/eng/sm1144
  • https://doi.org/10.1070/SM1991v070n01ABEH002123
  • https://www.mathnet.ru/eng/sm/v181/i6/p813
  • This publication is cited in the following 7 articles:
    1. D. I. Borisov, “Asimptoticheskii analiz kraevykh zadach dlya operatora Laplasa s chastoi smenoi tipa granichnykh uslovii”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 14–129  mathnet  crossref
    2. M. L. Kleptsyna, A. L. Piatnitski, “Homogenization of a random non-stationary convection-diffusion problem”, Russian Math. Surveys, 57:4 (2002), 729–751  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. F. Campillo, A. Piatnitski, Studies in Mathematics and Its Applications, 31, Nonlinear Partial Differential Equations and their Applications - Collège de France Seminar Volume XIV, 2002, 133  crossref
    4. Marina Kleptsyna, Andrey Piatnitski, Multiscale Problems in Science and Technology, 2002, 251  crossref
    5. Mark I. Freidlin, Richard B. Sowers, “A comparison of homogenization and large deviations, with applications to wavefront propagation”, Stochastic Processes and their Applications, 82:1 (1999), 23  crossref  mathscinet  zmath
    6. Kozlov S., Piatnitski A., “Effective Diffusion for a Parabolic Operator with Periodic Potential”, SIAM J. Appl. Math., 53:2 (1993), 401–418  crossref  mathscinet  zmath  isi
    7. Bensoussan A., Kozlov S., “Effective Diffusion in a Periodic-Flow”, Comptes Rendus Acad. Sci. Ser. I-Math., 315:7 (1992), 765–768  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:484
    Russian version PDF:109
    English version PDF:26
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025