Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 2, Pages 375–385
DOI: https://doi.org/10.4213/tvp290
(Mi tvp290)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the problem of stochastic integral representations of functionals of the Brownian motion. I

A. N. Shiryaeva, M. Yorb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Université Pierre & Marie Curie, Paris VI
References:
Abstract: For functionals S=S(ω) of the Brownian motion B, we propose a method for finding stochastic integral representations based on the Itô formula for the stochastic integral associated with B. As an illustration of the method, we consider functionals of the “maximal” type: ST, STa, SgT, and SθT, where ST=maxtTBt , STa=maxtTaBt with Ta=inf{t>0:Bt=a}, a>0, and SgT=maxtgTBt, SθT=maxtθTBt, gT and θT are non-Markov times: gT is the time of the last zero of Brownian motion on [0,T] and θT is a time when the Brownian motion achieves its maximal value on [0,T].
Keywords: Brownian motion, Markov time, non-Markov time, stochastic integral, stochastic integral representation, Itô formula.
Received: 01.12.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 2, Pages 304–313
DOI: https://doi.org/10.1137/S0040585X9780427
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Shiryaev, M. Yor, “On the problem of stochastic integral representations of functionals of the Brownian motion. I”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 375–385; Theory Probab. Appl., 48:2 (2004), 304–313
Citation in format AMSBIB
\Bibitem{ShiYor03}
\by A.~N.~Shiryaev, M.~Yor
\paper On the problem of stochastic integral representations of functionals of the Brownian motion.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 375--385
\mathnet{http://mi.mathnet.ru/tvp290}
\crossref{https://doi.org/10.4213/tvp290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2015458}
\zmath{https://zbmath.org/?q=an:1057.60057}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 304--313
\crossref{https://doi.org/10.1137/S0040585X9780427}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222357100008}
Linking options:
  • https://www.mathnet.ru/eng/tvp290
  • https://doi.org/10.4213/tvp290
  • https://www.mathnet.ru/eng/tvp/v48/i2/p375
    Cycle of papers
    This publication is cited in the following 10 articles:
    1. Ekaterine Namgalauri, Omar Purtukhia, “On the stochastic integral representation of Brownian functionals”, Georgian Mathematical Journal, 30:3 (2023), 417  crossref
    2. Riabov V G., “On a Brownian Motion Conditioned to Stay in An Open Set”, Ukr. Math. J., 72:9 (2021), 1482–1502  crossref  mathscinet  isi  scopus
    3. Aurzada F., Buck M., Kilian M., “Penalizing Fractional Brownian Motion For Being Negative”, Stoch. Process. Their Appl., 130:11 (2020), 6625–6637  crossref  mathscinet  isi
    4. O. A. Glonti, O. G. Purtukhiya, “On one integral representation of Brownian functional”, Theory Probab. Appl., 61:1 (2017), 133–139  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Feng R., “Stochastic Integral Representations of the Extrema of Time-homogeneous Diffusion Processes”, Methodol. Comput. Appl. Probab., 18:3 (2016), 691–715  crossref  mathscinet  zmath  isi  elib  scopus
    6. Ya. A. Lyulko, “Stochastic representations of max-type functionals of random walk”, Theory Probab. Appl., 54:3 (2010), 516–525  mathnet  crossref  crossref  mathscinet  isi
    7. V. Jaoshvili, O. G. Purtukhiya, “An Extension of the Ocone–Haussmann–Clark Formula for the Compensated Poisson Processes”, Theory Probab. Appl., 53:2 (2009), 316–321  mathnet  crossref  crossref  zmath  isi
    8. Fotopoulos S.B., Hu X., Munson C.L., “Flexible supply contracts under price uncertainty”, European Journal of Operational Research, 191:1 (2008), 253–263  crossref  mathscinet  zmath  isi  scopus
    9. Renaud J.-F., Remillard B., “Explicit martingale representations for Brownian functionals and applications to option hedging”, Stochastic Analysis and Applications, 25:4 (2007), 801–820  crossref  mathscinet  zmath  isi  scopus
    10. S. Graversen, A. N. Shiryaev, M. Yor, “On the problem of stochastic integral representations of functionals of the Browning motion. II”, Theory Probab. Appl., 51:1 (2007), 65–77  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :207
    References:119
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025