Abstract:
For functionals S=S(ω) of the Brownian motion B, we propose a method for finding stochastic integral representations based on the Itô formula for the stochastic integral associated with B. As an illustration of the method, we consider functionals of the “maximal” type: ST, ST−a, SgT, and SθT, where ST=maxt⩽TBt , ST−a=maxt⩽T−aBt with T−a=inf{t>0:Bt=−a}, a>0, and SgT=maxt⩽gTBt, SθT=maxt⩽θTBt, gT and θT are non-Markov times: gT is the time of the last zero of Brownian motion on [0,T] and θT is a time when the Brownian motion achieves its maximal value on [0,T].
Keywords:
Brownian motion, Markov time, non-Markov time, stochastic integral, stochastic integral representation, Itô formula.
Citation:
A. N. Shiryaev, M. Yor, “On the problem of stochastic integral representations of functionals of the Brownian motion. I”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 375–385; Theory Probab. Appl., 48:2 (2004), 304–313
\Bibitem{ShiYor03}
\by A.~N.~Shiryaev, M.~Yor
\paper On the problem of stochastic integral representations of functionals of the Brownian motion.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 375--385
\mathnet{http://mi.mathnet.ru/tvp290}
\crossref{https://doi.org/10.4213/tvp290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2015458}
\zmath{https://zbmath.org/?q=an:1057.60057}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 304--313
\crossref{https://doi.org/10.1137/S0040585X9780427}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222357100008}
This publication is cited in the following 10 articles:
Ekaterine Namgalauri, Omar Purtukhia, “On the stochastic integral representation of Brownian functionals”, Georgian Mathematical Journal, 30:3 (2023), 417
Riabov V G., “On a Brownian Motion Conditioned to Stay in An Open Set”, Ukr. Math. J., 72:9 (2021), 1482–1502
Aurzada F., Buck M., Kilian M., “Penalizing Fractional Brownian Motion For Being Negative”, Stoch. Process. Their Appl., 130:11 (2020), 6625–6637
O. A. Glonti, O. G. Purtukhiya, “On one integral representation of Brownian functional”, Theory Probab. Appl., 61:1 (2017), 133–139
Feng R., “Stochastic Integral Representations of the Extrema of Time-homogeneous Diffusion Processes”, Methodol. Comput. Appl. Probab., 18:3 (2016), 691–715
Ya. A. Lyulko, “Stochastic representations of max-type functionals of random walk”, Theory Probab. Appl., 54:3 (2010), 516–525
V. Jaoshvili, O. G. Purtukhiya, “An Extension of the Ocone–Haussmann–Clark Formula for the Compensated Poisson Processes”, Theory Probab. Appl., 53:2 (2009), 316–321
Fotopoulos S.B., Hu X., Munson C.L., “Flexible supply contracts under price uncertainty”, European Journal of Operational Research, 191:1 (2008), 253–263
Renaud J.-F., Remillard B., “Explicit martingale representations for Brownian functionals and applications to option hedging”, Stochastic Analysis and Applications, 25:4 (2007), 801–820
S. Graversen, A. N. Shiryaev, M. Yor, “On the problem of stochastic integral representations of functionals of the Browning motion. II”, Theory Probab. Appl., 51:1 (2007), 65–77