Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 2, Pages 274–300
DOI: https://doi.org/10.4213/tvp285
(Mi tvp285)
 

This article is cited in 28 scientific papers (total in 28 papers)

Galton–Watson branching processes in a random environment. I: limit theorems

V. A. Vatutin, E. E. D'yakonova

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Let Zn be the number of individuals at time n in a branching process in a random environment generated by independent identically distributed random probability generating functions f0(s),f1(s),,fn(s), . Let
Xi=logfi1(1),i=0,1,2,;S0=0,Sn=X1++Xn,n1.
It is shown that if Zn is, in a sense, “critical,” then there exists a limit in distribution
lim
where \zeta is a proper random variable positive with probability 1. In addition, it is shown that for a “typical” realization of the environment the number of individuals Z_n given \{Z_n>0\} grows as \exp\{S_n-\min_{0\le j\le n}S_j\} (up to a positive finite random multiplier).
Keywords: branching processes in random environment, survival probability, critical branching process, random walks, stable distributions, harmonic functions.
Received: 30.10.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 2, Pages 314–336
DOI: https://doi.org/10.1137/S0040585X97980373
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 274–300; Theory Probab. Appl., 48:2 (2004), 314–336
Citation in format AMSBIB
\Bibitem{VatDya03}
\by V.~A.~Vatutin, E.~E.~D'yakonova
\paper Galton--Watson branching processes in a random environment.~I: limit theorems
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 274--300
\mathnet{http://mi.mathnet.ru/tvp285}
\crossref{https://doi.org/10.4213/tvp285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2015453}
\zmath{https://zbmath.org/?q=an:1079.60080}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 314--336
\crossref{https://doi.org/10.1137/S0040585X97980373}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222357100009}
Linking options:
  • https://www.mathnet.ru/eng/tvp285
  • https://doi.org/10.4213/tvp285
  • https://www.mathnet.ru/eng/tvp/v48/i2/p274
    Cycle of papers
    This publication is cited in the following 28 articles:
    1. V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. A. Vatutin, E. E. Dyakonova, “Branching processes in random environment with sibling dependence”, J. Math. Sci. (N.Y.), 246:4 (2020), 569–579  mathnet  crossref  scopus
    3. Vatutin V. Dyakonova E., “Path to Survival For the Critical Branching Processes in a Random Environment”, J. Appl. Probab., 54:2 (2017), 588–602  crossref  mathscinet  isi  scopus
    4. Discrete Time Branching Processes in Random Environment, 2017, 275  crossref
    5. Elena E. D'yakonova, “Reduced multitype critical branching processes in random environment”, Discrete Math. Appl., 28:1 (2018), 7–22  mathnet  crossref  crossref  mathscinet  isi  elib
    6. V. A. Vatutin, E. E. D'yakonova, “How many families survive for a long time?”, Theory Probab. Appl., 61:4 (2017), 692–711  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. E. E. D'yakonova, “Limit theorem for multitype critical branching process evolving in random environment”, Discrete Math. Appl., 25:3 (2015), 137–147  mathnet  crossref  crossref  mathscinet  isi  elib
    8. E. E. Dyakonova, “Branching processes in a Markov random environment”, Discrete Math. Appl., 24:6 (2014), 327–343  mathnet  crossref  crossref  mathscinet  elib  elib
    9. Boeinghoff Ch., “Limit Theorems For Strongly and Intermediately Supercritical Branching Processes in Random Environment With Linear Fractional Offspring Distributions”, Stoch. Process. Their Appl., 124:11 (2014), 3553–3577  crossref  mathscinet  zmath  isi  scopus
    10. Afanasyev V.I. Boeinghoff Ch. Kersting G. Vatutin V.A., “Conditional Limit Theorems For Intermediately Subcritical Branching Processes in Random Environment”, Ann. Inst. Henri Poincare-Probab. Stat., 50:2 (2014), 602–627  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    11. V. A. Vatutin, E. E. Dyakonova, S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    12. V. A. Vatutin, Q. Liu, “Critical branching process with two types of particles evolving in asynchronous random environments”, Theory Probab. Appl., 57:2 (2013), 279–305  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    13. E. E. D'yakonova, “Multitype branching processes evolving in a Markovian environment”, Discrete Math. Appl., 22:5-6 (2012), 639–664  mathnet  crossref  crossref  mathscinet  elib
    14. V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    15. V. A. Vatutin, “Multitype branching processes with immigration in random environment, and polling systems”, Siberian Adv. Math., 21:1 (2011), 42–72  mathnet  crossref  mathscinet  elib  elib
    16. E. E. D'yakonova, “Multitype Galton–Watson branching processes in Markovian random environment”, Theory Probab. Appl., 56:3 (2011), 508–517  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    17. Florian Simatos, Wiley Encyclopedia of Operations Research and Management Science, 2011, 1  crossref
    18. V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177  mathnet  crossref  crossref  mathscinet  elib
    19. V. A. Vatutin, “Polling systems and multitype branching processes in a random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660  mathnet  crossref  crossref  mathscinet  isi
    20. Vladimir Vatutin, Lecture Notes in Statistics, 197, Workshop on Branching Processes and Their Applications, 2010, 3  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:1447
    Full-text PDF :325
    References:116
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025