Abstract:
Any transmission matrix for a multimode waveguide mith random non-homogeneities is symplectic. An analogue of the central limit theorem is applied to investigate products of such matrices.
Citation:
V. N. Tutubalin, “Multimode waveguides and probability distributions on a symplectic group”, Teor. Veroyatnost. i Primenen., 16:4 (1971), 649–659; Theory Probab. Appl., 16:4 (1971), 631–642
\Bibitem{Tut71}
\by V.~N.~Tutubalin
\paper Multimode waveguides and probability distributions on a~symplectic group
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 4
\pages 649--659
\mathnet{http://mi.mathnet.ru/tvp2324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=292125}
\zmath{https://zbmath.org/?q=an:0268.60093}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 4
\pages 631--642
\crossref{https://doi.org/10.1137/1116070}
Linking options:
https://www.mathnet.ru/eng/tvp2324
https://www.mathnet.ru/eng/tvp/v16/i4/p649
This publication is cited in the following 10 articles:
Modern Theory of Summation of Random Variables, 1997, 397
A. D. Venttsel', S. A. Molchanov, V. N. Tutubalin, “Asymptotic problems in probability theory and the theory of random media”, Theory Probab. Appl., 35:1 (1990), 87–93
Bernard Souillard, “Electrons in random and almost-periodic potentials”, Physics Reports, 103:1-4 (1984), 41
Theo Verheggen, “The transmission coefficients of a random system”, Applied Scientific Research, 37:1-2 (1981), 163
Werner Kohler, “Power Reflection at the Input of a Randomly Perturbed Rectangular Waveguide”, SIAM J. Appl. Math., 32:3 (1977), 521
S. V. Rezničenko, “The structure of the fundamental matrix of a system of coupled-mode equations”, Theory Probab. Appl., 22:2 (1978), 311–325
S. V. Rezničenko, “An investigation of systems of coupled-mode equations with small random disturbances”, Theory Probab. Appl., 22:1 (1977), 124–128
M. H. Zakhar-Itkin, “The matrix Riccati differential equation and the semi-group of linear fractional transformations”, Russian Math. Surveys, 28:3 (1973), 89–131
Roger W. Brockett, Geometric Methods in System Theory, 1973, 43
V. N. Tutubalin, “A representation of random matrices in orispherical coordinates and its application to telegraph equations”, Theory Probab. Appl., 17:2 (1973), 255–268