Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 2, Pages 266–280 (Mi tvp2527)  

This article is cited in 6 scientific papers (total in 6 papers)

A representation of random matrices in orispherical coordinates and its application to telegraph equations

V. N. Tutubalin

Moscow
Full-text PDF (898 kB) Citations (6)
Abstract: A central limit theorem for products g(n)=g1g2gn of random matrices g1,g2,,gn was considered in an earlier paper [5], a representation
g(n)=x(n)d(n)u(n)
with orthogonal (unitary) matrices x(n) and u(n) and diagonal d(n) being investigated. Products of random matrices, as far as we know, arise in the theory of telegraph equations [9], [10], where the matrices g1,,gn are symplectic, but unitary matrices have no immediate physical interpretation in the frame of this theory. From the viewpoint of possible applications a more physical form of central limit theorem is highly desirable. Such forms are given in the present paper.
Received: 01.12.1970
English version:
Theory of Probability and its Applications, 1973, Volume 17, Issue 2, Pages 255–268
DOI: https://doi.org/10.1137/1117030
Bibliographic databases:
Language: Russian
Citation: V. N. Tutubalin, “A representation of random matrices in orispherical coordinates and its application to telegraph equations”, Teor. Veroyatnost. i Primenen., 17:2 (1972), 266–280; Theory Probab. Appl., 17:2 (1973), 255–268
Citation in format AMSBIB
\Bibitem{Tut72}
\by V.~N.~Tutubalin
\paper A~representation of random matrices in orispherical coordinates and its application to telegraph equations
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 2
\pages 266--280
\mathnet{http://mi.mathnet.ru/tvp2527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=307305}
\zmath{https://zbmath.org/?q=an:0267.60028}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 2
\pages 255--268
\crossref{https://doi.org/10.1137/1117030}
Linking options:
  • https://www.mathnet.ru/eng/tvp2527
  • https://www.mathnet.ru/eng/tvp/v17/i2/p266
  • This publication is cited in the following 6 articles:
    1. A. V. Letchikov, “Products of unimodular independent random matrices”, Russian Math. Surveys, 51:1 (1996), 49–96  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. L. Girko, “Limit theorems for products of independent random matrices with positive elements”, Theory Probab. Appl., 27:4 (1983), 837–844  mathnet  mathnet  crossref  isi
    3. “Summary of Papers Presented at Sessions of the Probability and Statistics Seminar in the Mathematical Institute of the USSR Academy of Sciences, 1977”, Theory Probab. Appl., 23:2 (1979), 439–457  mathnet  mathnet  crossref
    4. S. V. Rezničenko, “An investigation of systems of coupled-mode equations with small random disturbances”, Theory Probab. Appl., 22:1 (1977), 124–128  mathnet  mathnet  crossref
    5. V. N. Tutubalin, “A local limit theorem for products of random matrices”, Theory Probab. Appl., 22:2 (1978), 203–214  mathnet  mathnet  crossref
    6. S. V. Rezničenko, “The structure of the fundamental matrix of a system of coupled-mode equations”, Theory Probab. Appl., 22:2 (1978), 311–325  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025