Abstract:
Limit theorems are obtained for the continuous time branching processes when the mean density of immigration tends to zero as the time tends to infinity.
Citation:
I. S. Badalbaev, I. Rahimov, “Дальнейшие результаты по ветвящимся случайным процессам с иммиграцией убывающей интенсивности”, Teor. Veroyatnost. i Primenen., 28:4 (1983), 775–780; Theory Probab. Appl., 28:4 (1984), 811–816
\Bibitem{BadRak83}
\by I.~S.~Badalbaev, I.~Rahimov
\paper Дальнейшие результаты по ветвящимся случайным процессам с иммиграцией убывающей интенсивности
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 4
\pages 775--780
\mathnet{http://mi.mathnet.ru/tvp2229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=726904}
\zmath{https://zbmath.org/?q=an:0561.60088|0529.60087}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 4
\pages 811--816
\crossref{https://doi.org/10.1137/1128080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TV66700016}
Linking options:
https://www.mathnet.ru/eng/tvp2229
https://www.mathnet.ru/eng/tvp/v28/i4/p775
This publication is cited in the following 4 articles:
Ibrahim Rahimov, “Homogeneous Branching Processes with Non-Homogeneous Immigration”, Stochastics and Quality Control, 36:2 (2021), 165
Maroussia Slavtchova-Bojkova, Nikolay M. Yanev, “Poisson random measures and critical Sevastyanov branching processes”, Stochastic Models, 35:2 (2019), 197
I. Rachimov, “Local Limit Theorems for Critical Galton–Watson Processes with Decreasing Immigration”, Theory Probab. Appl., 33:2 (1988), 365–369
I. Rahimov, “Critical branching processes with the infinite variance and the decreasing immigration”, Theory Probab. Appl., 31:1 (1987), 88–100