Abstract:
For the Robbins–Monro process (1) we study the upper functions g(t) such that
lim supt→∞(X(t)−θ)/g(t)=1 a. s. In the case of continuous time ξ(t) in (1) is the process with homogeneous independent increments; in the case of discrete time dξ(s), are i. i. d. random variables. The one-dimensional procedure (2) is considered in theorem 1, the multidimensional procedure (11) is studied in theorem 2. All results are obtained under the assumption of finiteness of moment generating function and are based on the theorems on large deviations for Markov processes [10].
Citation:
A. P. Korostelev, “A note on upper functions for stochastic approximation”, Teor. Veroyatnost. i Primenen., 28:4 (1983), 769–775; Theory Probab. Appl., 28:4 (1984), 806–811
\Bibitem{Kor83}
\by A.~P.~Korostelev
\paper A note on upper functions for stochastic approximation
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 4
\pages 769--775
\mathnet{http://mi.mathnet.ru/tvp2226}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=726903}
\zmath{https://zbmath.org/?q=an:0558.62074|0536.62064}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 4
\pages 806--811
\crossref{https://doi.org/10.1137/1128079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TV66700015}
Linking options:
https://www.mathnet.ru/eng/tvp2226
https://www.mathnet.ru/eng/tvp/v28/i4/p769
This publication is cited in the following 3 articles:
Valery Koval, Rainer Schwabe, “A law of the iterated logarithm for stochastic approximation procedures in d-dimensional Euclidean space”, Stochastic Processes and their Applications, 105:2 (2003), 299
Valery Koval, Rainer Schwabe, “Exact bounds for the rate of convergence in general stochastic approximation procedures”, Stochastic Analysis and Applications, 16:3 (1998), 501
R. Schwabe, “Recursive Estimation and Difference Equations”, Theory Probab. Appl., 37:2 (1993), 359–362