Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 4, Pages 692–710
DOI: https://doi.org/10.4213/tvp2016
(Mi tvp2016)
 

This article is cited in 6 scientific papers (total in 6 papers)

Some bounds on the rate of convergence in the CLT for martingales. I

Y. Rinotta, V. I. Rotar'b

a Mathematics Department, UCSD, CA
b Central Economics and Mathematics Institute, RAS
Abstract: This paper concerns rates of convergence in the central limit theorem (CLT) for the random variables $S_{n}=\sum_{1}^{n}X_{m}$, where $X_{m}$ are martingale-differences. It is known that in the general case one cannot hope for a rate better than $O(n^{-1/8})$ even if the third moments are finite. If the conditional variances satisfy $\mathsf{E}\{X_{m}^2\mid X_{1}\ldots X_{m-1}\}=\mathsf{E}X_{m}^2$, the rate in general is no better than $O(n^{-1/4}),$ while in the independency case it is of the order $O(n^{-1/2})$. This paper contains a bound which covers simultaneously the cases mentioned as well as some intermediate cases. The bound is presented in terms of some dependency characteristics reflecting the influence of different factors on the rate.
Keywords: central limit theorem, martingales, rate of convergence.
Received: 12.08.1997
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 4, Pages 604–619
DOI: https://doi.org/10.1137/S0040585X97977148
Bibliographic databases:
Language: Russian
Citation: Y. Rinott, V. I. Rotar', “Some bounds on the rate of convergence in the CLT for martingales. I”, Teor. Veroyatnost. i Primenen., 43:4 (1998), 692–710; Theory Probab. Appl., 43:4 (1999), 604–619
Citation in format AMSBIB
\Bibitem{RinRot98}
\by Y.~Rinott, V.~I.~Rotar'
\paper Some bounds on~the~rate of~convergence in~the~CLT for martingales.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 4
\pages 692--710
\mathnet{http://mi.mathnet.ru/tvp2016}
\crossref{https://doi.org/10.4213/tvp2016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692417}
\zmath{https://zbmath.org/?q=an:0963.60017}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 4
\pages 604--619
\crossref{https://doi.org/10.1137/S0040585X97977148}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085137600006}
Linking options:
  • https://www.mathnet.ru/eng/tvp2016
  • https://doi.org/10.4213/tvp2016
  • https://www.mathnet.ru/eng/tvp/v43/i4/p692
    Cycle of papers
    This publication is cited in the following 6 articles:
    1. Alperen Özdemir, “Martingales and descent statistics”, Advances in Applied Mathematics, 140 (2022), 102395  crossref
    2. Yeor Hafouta, Yuri Kifer, “Berry–Esseen type estimates for nonconventional sums”, Stochastic Processes and their Applications, 126:8 (2016), 2430  crossref
    3. Ba M. Chu, Kim P. Huynh, David T. Jacho-Chávez, “Functionals of order statistics and their multivariate concomitants with application to semiparametric estimation by nearest neighbours”, Sankhya B, 75:2 (2013), 238  crossref
    4. Gesine Reinert, Adrian Röllin, “Random subgraph counts andU-statistics: multivariate normal approximation via exchangeable pairs and embedding”, Journal of Applied Probability, 47:2 (2010), 378  crossref
    5. Hormann S., “Berry-Esseen bounds for econometric time series”, Alea-Latin American Journal of Probability and Mathematical Statistics, 6 (2009), 377–397  mathscinet  zmath  isi
    6. El Machkouri M., Ouchti L., “Exact convergence rates in the central limit theorem for a class of martingales”, Bernoulli, 13:4 (2007), 981–999  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :202
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025