Abstract:
Two classes of minimal functional arising in the Kantorovic problem on the best mass mixing are studied. Explicit expressions for this metric functionals are given and their topological properties are studied.
Citation:
S. T. Račev, “On a class of minimal functionals on the space of probability measures”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 41–48; Theory Probab. Appl., 29:1 (1985), 41–49
\Bibitem{Rac84}
\by S.~T.~Ra{\v{c}}ev
\paper On a class of minimal functionals on the space of probability measures
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 1
\pages 41--48
\mathnet{http://mi.mathnet.ru/tvp1957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=739499}
\zmath{https://zbmath.org/?q=an:0554.60009|0531.60008}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 1
\pages 41--49
\crossref{https://doi.org/10.1137/1129004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AFG0600004}
Linking options:
https://www.mathnet.ru/eng/tvp1957
https://www.mathnet.ru/eng/tvp/v29/i1/p41
This publication is cited in the following 13 articles:
Johannes Milz, Thomas M. Surowiec, “Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite-Dimensional Decision Spaces”, Mathematics of OR, 2023
Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Scholkopf, Gert R. G. Lanckriet, 2010 IEEE International Symposium on Information Theory, 2010, 1428
M. del Carmen Pardo, I. Vajda, “On asymptotic properties of information-theoretic divergences”, IEEE Trans. Inform. Theory, 49:7 (2003), 1860
S. T. Rachev, M. Taksar, Lecture Notes in Control and Information Sciences, 177, Applied Stochastic Analysis, 1992, 248
Michael Lavine, Larry Wasserman, Robert L. Wolpert, “Bayesian Inference with Specified Prior Marginals”, Journal of the American Statistical Association, 86:416 (1991), 964
Anatoliy T. Fomenko, Svetlozar T. Rachev, “Volume functions of historical texts and the amplitude correlation principle”, Comput Hum, 24:3 (1990), 187
S. T. Rachev, “The problem of stability in queueing theory”, Queueing Syst, 4:4 (1989), 287
V. L. Levin, S. T. Rachev, Lecture Notes in Mathematics, 1412, Stability Problems for Stochastic Models, 1989, 137
René Ferland, Gaston Giroux, Advances in the Statistical Sciences: Applied Probability, Stochastic Processes, and Sampling Theory, 1987, 101
René Ferland, Gaston Giroux, “Cutoff-type Boltzmann equations: Convergence of the solution”, Advances in Applied Mathematics, 8:1 (1987), 98
V. V. Kalashnikov, S. T. Rachev, “A characterization of queueing models and its stability”, J Math Sci, 35:2 (1986), 2336
S. T. Rachev, Lecture Notes in Mathematics, 1155, Stability Problems for Stochastic Models, 1985, 320
S. T. Rachev, “The Monge–Kantorovich mass transference problem and its stochastic applications”, Theory Probab. Appl., 29:4 (1985), 647–676