Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1984, Volume 29, Issue 1, Pages 33–40 (Mi tvp1927)  

This article is cited in 6 scientific papers (total in 6 papers)

The invariance principle for weakly dependent variables

В. A. Lifšic

Leningrad
Full-text PDF (547 kB) Citations (6)
Abstract: Let Sn=Xn1++Xnn, DXnk<, EXnk=0. Denote Fk=Fnk=σ{(Xns)sk} and EkZ=E(ZFk). Let σ-field Ek=σ{(Ej1Xni<q)ijk,qR},
γn(r)=sup
We define the random functions on [0, 1]
\xi_n(t)=B_n^{-1}\sum_{j\ge 1}X_{nj}\mathbf 1_{b_j\le tB_n^2},\qquad b_j=(\mathbf D-\mathbf DE_j)\sum_{k=1}^jX_{nk},
and denote by \mathscr L(\xi_n) the distribution of \xi_n in the Skorohod space.
Theorem. {\it If \displaystyle\lim_{n\to\infty}B_n^{-2}\biggl(l_n+\sum_{r=1}^{n-1}\sqrt{\gamma_n(r)}\biggr)\sum_{j=1}^n\mathbf EX_{nj}^2 1_{|X_{nj}|>\varepsilon B_n/l_n}=0 for every \varepsilon>0, then \mathscr L(\xi_n) converges weakly to a Wiener distribution.}
The estimate \displaystyle\mathbf DS_n\ge\frac{1}{16}(1-\gamma_n(1))\sum_{k=1}^n\mathbf DX_{nk} is obtained also.
This theorem generalizes the well-known Dobrusin's results [9] for inhomogeneous Markow chains.
Received: 12.03.1980
English version:
Theory of Probability and its Applications, 1985, Volume 29, Issue 1, Pages 33–40
DOI: https://doi.org/10.1137/1129003
Bibliographic databases:
Language: Russian
Citation: В. A. Lifšic, “The invariance principle for weakly dependent variables”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 33–40; Theory Probab. Appl., 29:1 (1985), 33–40
Citation in format AMSBIB
\Bibitem{Lif84}
\by В.~A.~Lif{\v s}ic
\paper The invariance principle for weakly dependent variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 1
\pages 33--40
\mathnet{http://mi.mathnet.ru/tvp1927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=739498}
\zmath{https://zbmath.org/?q=an:0535.60026|0554.60043}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 1
\pages 33--40
\crossref{https://doi.org/10.1137/1129003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AFG0600003}
Linking options:
  • https://www.mathnet.ru/eng/tvp1927
  • https://www.mathnet.ru/eng/tvp/v29/i1/p33
  • This publication is cited in the following 6 articles:
    1. Sofia Kuzmina, Maksim Osipov, Actual problems of jurisprudence, 2022, 110  crossref
    2. J. Sunklodas, Limit Theorems of Probability Theory, 2000, 113  crossref
    3. I. A. Ibragimov, “Dobrushin's works on Markov processes”, Russian Math. Surveys, 52:2 (1997), 239–243  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. A. Utev, “The central limit theorem for \varphi-mixing arrays of random variables”, Theory Probab. Appl., 35:1 (1990), 131–139  mathnet  mathnet  crossref  isi
    5. George G. Roussas, D. Ioannides, “Moment inequalities for mixing sequences of random variables”, Stochastic Analysis and Applications, 5:1 (1987), 60  crossref
    6. Richard C. Bradley, Wlodzimierz Bryc, Svante Janson, “On dominations between measures of dependence”, Journal of Multivariate Analysis, 23:2 (1987), 312  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :103
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025