Abstract:
Let Sn=Xn1+⋯+Xnn, DXnk<∞, EXnk=0.
Denote Fk=Fnk=σ{(Xns)s⩾k} and
EkZ=E(Z∣Fk).
Let σ-field Ek=σ{(Ej1Xni<q)i⩽j⩽k,q∈R},
γn(r)=sup
We define the random functions on [0, 1]
\xi_n(t)=B_n^{-1}\sum_{j\ge 1}X_{nj}\mathbf 1_{b_j\le tB_n^2},\qquad b_j=(\mathbf D-\mathbf DE_j)\sum_{k=1}^jX_{nk},
and denote by \mathscr L(\xi_n) the distribution of \xi_n in the Skorohod space.
Theorem. {\it If \displaystyle\lim_{n\to\infty}B_n^{-2}\biggl(l_n+\sum_{r=1}^{n-1}\sqrt{\gamma_n(r)}\biggr)\sum_{j=1}^n\mathbf EX_{nj}^2 1_{|X_{nj}|>\varepsilon B_n/l_n}=0 for every \varepsilon>0,
then \mathscr L(\xi_n) converges weakly to a Wiener distribution.}
The estimate \displaystyle\mathbf DS_n\ge\frac{1}{16}(1-\gamma_n(1))\sum_{k=1}^n\mathbf DX_{nk} is obtained also.
This theorem generalizes the well-known Dobrusin's results [9] for inhomogeneous
Markow chains.
Citation:
В. A. Lifšic, “The invariance principle for weakly dependent variables”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 33–40; Theory Probab. Appl., 29:1 (1985), 33–40
This publication is cited in the following 6 articles:
Sofia Kuzmina, Maksim Osipov, Actual problems of jurisprudence, 2022, 110
J. Sunklodas, Limit Theorems of Probability Theory, 2000, 113
I. A. Ibragimov, “Dobrushin's works on Markov processes”, Russian Math. Surveys, 52:2 (1997), 239–243
S. A. Utev, “The central limit theorem for \varphi-mixing arrays of random variables”, Theory Probab. Appl., 35:1 (1990), 131–139
George G. Roussas, D. Ioannides, “Moment inequalities for mixing sequences of random variables”, Stochastic Analysis and Applications, 5:1 (1987), 60
Richard C. Bradley, Wlodzimierz Bryc, Svante Janson, “On dominations between measures of dependence”, Journal of Multivariate Analysis, 23:2 (1987), 312