Citation:
A. N. Tikhomirov, “On the accuracy of the normal approximation of the probability of sums of weakly dependent Hilbert-space-valued random variables hitting a ball. I”, Teor. Veroyatnost. i Primenen., 36:4 (1991), 699–710; Theory Probab. Appl., 36:4 (1991), 738–751
\Bibitem{Tik91}
\by A.~N.~Tikhomirov
\paper On the accuracy of the normal approximation of the probability of sums of weakly dependent Hilbert-space-valued random variables hitting a~ball.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 1991
\vol 36
\issue 4
\pages 699--710
\mathnet{http://mi.mathnet.ru/tvp1777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1147171}
\zmath{https://zbmath.org/?q=an:0776.60010|0742.60009}
\transl
\jour Theory Probab. Appl.
\yr 1991
\vol 36
\issue 4
\pages 738--751
\crossref{https://doi.org/10.1137/1136089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991KG46300007}
Linking options:
https://www.mathnet.ru/eng/tvp1777
https://www.mathnet.ru/eng/tvp/v36/i4/p699
This publication is cited in the following 7 articles:
I. S. Borisov, N. V. Volodko, “Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations”, Siberian Adv. Math., 18:4 (2008), 242–257
J. Math. Sci. (N. Y.), 147:4 (2007), 6891–6911
I. S. Borisov, A. A. Bystrov, “Limit theorems for the canonical von Mises statistics with dependent data”, Siberian Math. J., 47:6 (2006), 980–989
Herold Dehling, Olimjon SH. Sharipov, “Estimation of Mean and Covariance Operator for Banach Space Valued Autoregressive Processes with Dependent Innovations”, Stat Infer Stoch Process, 8:2 (2005), 137
F. Götze, A. N. Tikhomirov, “Asymptotic Expansions in Non-central Limit Theorems for Quadratic Forms”, J Theor Probab, 18:4 (2005), 757
V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239
A. N. Tikhomirov, “On the accuracy of normal approximation of the probability of hitting a ball of sums of weakly dependent Hilbert space valued random variables II”, Theory Probab. Appl., 38:1 (1993), 80–94