Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2008, Volume 11, Number 1, Pages 25–48 (Mi mt115)  

This article is cited in 14 scientific papers (total in 14 papers)

Orthogonal series and limit theorems for canonical U- and V-statistics of stationary connected observations

I. S. Borisovab, N. V. Volodkoab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
References:
Abstract: The limit behavior is studied for the distributions of normalized U- and V-statistics of an arbitrary order with canonical (degenerate) kernels, based on samples of increasing sizes from a stationary sequence of observations satisfying φ-or α-mixing. The corresponding limit distributions are represented as infinite multilinear forms of a centered Gaussian sequence with a known covariance matrix.
Key words: stationary sequence of random variables, mixing, multiple orthogonal series, canonical U- and V-statistics.
Received: 13.09.2007
English version:
Siberian Advances in Mathematics, 2008, Volume 18, Issue 4, Pages 242–257
DOI: https://doi.org/10.3103/S1055134408040020
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: I. S. Borisov, N. V. Volodko, “Orthogonal series and limit theorems for canonical U- and V-statistics of stationary connected observations”, Mat. Tr., 11:1 (2008), 25–48; Siberian Adv. Math., 18:4 (2008), 242–257
Citation in format AMSBIB
\Bibitem{BorVol08}
\by I.~S.~Borisov, N.~V.~Volodko
\paper Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
\jour Mat. Tr.
\yr 2008
\vol 11
\issue 1
\pages 25--48
\mathnet{http://mi.mathnet.ru/mt115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2437480}
\transl
\jour Siberian Adv. Math.
\yr 2008
\vol 18
\issue 4
\pages 242--257
\crossref{https://doi.org/10.3103/S1055134408040020}
Linking options:
  • https://www.mathnet.ru/eng/mt115
  • https://www.mathnet.ru/eng/mt/v11/i1/p25
  • This publication is cited in the following 14 articles:
    1. I. S. Borisov, A. A. Bystrov, “Exponential inequalities for the distributions of canonical multiple partial sum processes”, Theory Probab. Appl., 64:2 (2019), 171–185  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. I. S. Borisov, V. A. Zhechev, “Exponential inequalities for the distributions of V-processes based on dependent observations”, Siberian Adv. Math., 29 (2019), 263–273  mathnet  crossref  crossref
    3. I. S. Borisov, N. V. Volod'ko, “Asymptotic expansions for the distributions of canonical V-statistics of third order”, Theory Probab. Appl., 60:1 (2016), 1–18  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Borisov I.S. Volodko N.V., “a Note on Exponential Inequalities For the Distribution Tails of Canonical Von Mises' Statistics of Dependent Observations”, Stat. Probab. Lett., 96 (2015), 287–291  crossref  mathscinet  zmath  isi  elib  scopus
    5. Volodko N.V., “Small Deviations of the Determinants of Random Matrices with Gaussian Entries”, Stat. Probab. Lett., 84 (2014), 48–53  crossref  mathscinet  zmath  isi  scopus
    6. Adamczak R., Milos P., “U-Statistics of Ornstein–Uhlenbeck Branching Particle System”, J. Theor. Probab., 27:4 (2014), 1071–1111  crossref  mathscinet  zmath  isi  scopus
    7. Denker M., Gordin M., “Limit Theorems For Von Mises Statistics of a Measure Preserving Transformation”, Probab. Theory Relat. Field, 160:1-2 (2014), 1–45  crossref  mathscinet  zmath  isi  scopus
    8. Leucht A., Neumann M.H., “Degenerate - and -Statistics Under Ergodicity: Asymptotics, Bootstrap and Applications in Statistics”, Ann. Inst. Stat. Math., 65:2 (2013), 349–386  crossref  mathscinet  zmath  isi  elib  scopus
    9. I. S. Borisov, V. A. Zhechev, “Invariance principle for canonical U- and V-statistics based on dependent observations”, Siberian Adv. Math., 25:1 (2015), 21–32  mathnet  crossref  mathscinet
    10. Leucht A., Neumann M.H., “Dependent Wild Bootstrap for Degenerate U- and V-Statistics”, J. Multivar. Anal., 117 (2013), 257–280  crossref  mathscinet  zmath  isi  elib  scopus
    11. I. S. Borisov, V. A. Zhechev, “The functional limit theorem for the canonical U-processes defined on dependent trials”, Siberian Math. J., 52:4 (2011), 593–601  mathnet  crossref  mathscinet  isi
    12. I. S. Borisov, D. I. Sidorov, “Limit theorems for additive statistics based on moving average samples”, Siberian Adv. Math., 21:4 (2011), 233–249  mathnet  crossref  mathscinet
    13. N. V. Volod'ko, “Limit theorems for canonical von Mises statistics and U-statistics for m-dependent observations”, Theory Probab. Appl., 55:2 (2011), 271–290  mathnet  crossref  crossref  mathscinet  isi
    14. I. S. Borisov, N. V. Volodko, “Exponential inequalities for the distributions of canonical U- and V-statistics of dependent observations”, Siberian Adv. Math., 19:1 (2009), 1–12  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:596
    Full-text PDF :186
    References:86
    First page:8
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025