Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2008, Volume 11, Number 2, Pages 3–19 (Mi mt124)  

This article is cited in 11 scientific papers (total in 11 papers)

Exponential inequalities for the distributions of canonical U- and V-statistics of dependent observations

I. S. Borisovab, N. V. Volodkoab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
References:
Abstract: Exponential inequalities are obtained for the distribution tails of canonical (degenerate) U- and V-statistics of an arbitrary order based on samples from a stationary sequence of observations satisfying φ-mixing.
Key words: stationary sequence of random variables, φ-mixing, multiple orthogonal series, canonical U- and V-statistics.
Received: 18.06.2008
English version:
Siberian Advances in Mathematics, 2009, Volume 19, Issue 1, Pages 1–12
DOI: https://doi.org/10.3103/S1055134409010015
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: I. S. Borisov, N. V. Volodko, “Exponential inequalities for the distributions of canonical U- and V-statistics of dependent observations”, Mat. Tr., 11:2 (2008), 3–19; Siberian Adv. Math., 19:1 (2009), 1–12
Citation in format AMSBIB
\Bibitem{BorVol08}
\by I.~S.~Borisov, N.~V.~Volodko
\paper Exponential inequalities for the distributions of canonical $U$- and $V$-statistics of dependent observations
\jour Mat. Tr.
\yr 2008
\vol 11
\issue 2
\pages 3--19
\mathnet{http://mi.mathnet.ru/mt124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500124}
\transl
\jour Siberian Adv. Math.
\yr 2009
\vol 19
\issue 1
\pages 1--12
\crossref{https://doi.org/10.3103/S1055134409010015}
Linking options:
  • https://www.mathnet.ru/eng/mt124
  • https://www.mathnet.ru/eng/mt/v11/i2/p3
  • This publication is cited in the following 11 articles:
    1. Davide Giraudo, “An exponential inequality for Hilbert-valued U-statistics of i.i.d. data”, Journal of Multivariate Analysis, 2025, 105406  crossref
    2. Wenzhuo Zhou, Ruoqing Zhu, Annie Qu, “Estimating Optimal Infinite Horizon Dynamic Treatment Regimes via pT-Learning”, Journal of the American Statistical Association, 119:545 (2024), 625  crossref
    3. I. S. Borisov, A. A. Bystrov, “Exponential inequalities for the distributions of canonical multiple partial sum processes”, Theory Probab. Appl., 64:2 (2019), 171–185  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Han F., “An Exponential Inequality For U-Statistics Under Mixing Conditions”, J. Theor. Probab., 31:1 (2018), 556–578  crossref  mathscinet  zmath  isi  scopus
    5. I. S. Borisov, V. A. Zhechev, “Exponential inequalities for the distributions of V-processes based on dependent observations”, Siberian Adv. Math., 29 (2019), 263–273  mathnet  crossref  crossref
    6. Haerdie W.K., Wang W., Yu L., “Tenet: Tail-Event Driven Network Risk”, J. Econom., 192:2 (2016), 499–513  crossref  mathscinet  isi  scopus
    7. Borisov I.S., Volodko N.V., “a Note on Exponential Inequalities For the Distribution Tails of Canonical Von Mises' Statistics of Dependent Observations”, Stat. Probab. Lett., 96 (2015), 287–291  crossref  mathscinet  zmath  isi  elib  scopus
    8. Wolfgang K. HHrdle, Weining Wang, Lining Yu, “TENET: Tail-Event Driven NETwork Risk”, SSRN Journal, 2015  crossref
    9. P. S. Ruzankin, “Ob eksponentsialnykh neravenstvakh dlya kanonicheskikh V-statistik”, Sib. elektron. matem. izv., 11 (2014), 70–75  mathnet
    10. P. S. Ruzankin, “Ob eksponentsialnykh neravenstvakh dlya V-statistik s neogranichennymi yadrami”, Sib. elektron. matem. izv., 11 (2014), 200–206  mathnet
    11. A. A. Bystrov, “Exponential inequalities for probability deviations of stochastic integrals over Gaussian integrable processes”, Theory Probab. Appl., 59:1 (2015), 128–136  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :171
    References:84
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025