Citation:
L. A. Alyushina, “Eyler Curves for Îto Equations with Monotone Coefficients”, Teor. Veroyatnost. i Primenen., 32:2 (1987), 367–373; Theory Probab. Appl., 32:2 (1987), 340–345
This publication is cited in the following 10 articles:
Predrag Pilipovic, Adeline Samson, Susanne Ditlevsen, “Parameter estimation in nonlinear multivariate stochastic differential equations based on splitting schemes”, Ann. Statist., 52:2 (2024)
Evelyn Buckwar, Adeline Samson, Massimiliano Tamborrino, Irene Tubikanec, “A splitting method for SDEs with locally Lipschitz drift: Illustration on the FitzHugh-Nagumo model”, Applied Numerical Mathematics, 179 (2022), 191
I. Gyöngy, N. V. Krylov, “Existence of strong solutions for Itô's stochastic equations via approximations: revisited”, Stoch PDE: Anal Comp, 10:3 (2022), 693
Martin Hutzenthaler, Arnulf Jentzen, Peter E. Kloeden, “Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations”, Ann. Appl. Probab., 23:5 (2013)
Ji Cheng Liu, “Rate of convergence of Euler's approximations for SDEs with non-Lipschitz coefficients”, Acta. Math. Sin.-English Ser., 29:8 (2013), 1555
Martin Hutzenthaler, Arnulf Jentzen, Peter E. Kloeden, “Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients”, Ann. Appl. Probab., 22:4 (2012)
István Gyöngy, Nicolai Krylov, “Existence of strong solutions for Itô's stochastic equations via approximations”, Probab. Th. Rel. Fields, 105:2 (1996), 143
N. V. Krylov, “A simple proof of the existence of a solution to the Itô equation with monotone coefficients”, Theory Probab. Appl., 35:3 (1990), 583–587
L. A. Alyushina, “Passage to the Limit in Stochastic Itô Equations with Monotonic Coefficients”, Theory Probab. Appl., 32:4 (1987), 741–744