Citation:
N. V. Krylov, “A simple proof of the existence of a solution to the Itô equation with monotone coefficients”, Teor. Veroyatnost. i Primenen., 35:3 (1990), 576–580; Theory Probab. Appl., 35:3 (1990), 583–587
\Bibitem{Kry90}
\by N.~V.~Krylov
\paper A~simple proof of the existence of a~solution to the It\^o equation with monotone coefficients
\jour Teor. Veroyatnost. i Primenen.
\yr 1990
\vol 35
\issue 3
\pages 576--580
\mathnet{http://mi.mathnet.ru/tvp1364}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1091217}
\zmath{https://zbmath.org/?q=an:0735.60061|0712.60062}
\transl
\jour Theory Probab. Appl.
\yr 1990
\vol 35
\issue 3
\pages 583--587
\crossref{https://doi.org/10.1137/1135082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990GN64500022}
Linking options:
https://www.mathnet.ru/eng/tvp1364
https://www.mathnet.ru/eng/tvp/v35/i3/p576
This publication is cited in the following 27 articles:
Xicheng Zhang, “Compound Poisson particle approximation for McKean–Vlasov SDEs”, IMA Journal of Numerical Analysis, 2025
Predrag Pilipovic, Adeline Samson, Susanne Ditlevsen, “Parameter estimation in nonlinear multivariate stochastic differential equations based on splitting schemes”, Ann. Statist., 52:2 (2024)
Fangfang Shen, Huaqin Peng, “Existence and uniqueness of solutions for stochastic differential equations with locally one-sided Lipschitz condition”, MATH, 9:8 (2024), 22578
Dong-Young Lim, Ariel Neufeld, Sotirios Sabanis, Ying Zhang, “Langevin Dynamics Based Algorithm e-THεO POULA for Stochastic Optimization Problems with Discontinuous Stochastic Gradient”, Mathematics of OR, 2024
Dong-Young Lim, Ariel Neufeld, Sotirios Sabanis, Ying Zhang, “Non-asymptotic estimates for TUSLA algorithm for non-convex learning with applications to neural networks with ReLU activation function”, IMA Journal of Numerical Analysis, 2023
Konstantinos Dareiotis, Máté Gerencsér, Khoa Lê, “Quantifying a convergence theorem of Gyöngy and Krylov”, Ann. Appl. Probab., 33:3 (2023)
Evelyn Buckwar, Adeline Samson, Massimiliano Tamborrino, Irene Tubikanec, “A splitting method for SDEs with locally Lipschitz drift: Illustration on the FitzHugh-Nagumo model”, Applied Numerical Mathematics, 179 (2022), 191
Yunzhang Li, Shanjian Tang, “Approximation of BSDEs with super-linearly growing generators by Euler's polygonal line method: A simple proof of the existence”, Systems & Control Letters, 153 (2021), 104952
Li Tan, Chenggui Yuan, “A note on strong convergence of implicit scheme for SDEs under local one-sided Lipschitz conditions”, International Journal of Computer Mathematics, 98:2 (2021), 238
Latifa Debbi, “Fractional Stochastic Active Scalar Equations Generalizing the Multi-Dimensional Quasi-Geostrophic & 2D-Navier–Stokes Equations: The General Case”, J. Math. Fluid Mech., 22:4 (2020)
Andrei Cozma, Christoph Reisinger, “Strong Convergence Rates for Euler Approximations to a Class of Stochastic Path-Dependent Volatility Models”, SIAM J. Numer. Anal., 56:6 (2018), 3430
Xueyan Zhao, Feiqi Deng, “A New Type of Stability Theorem for Stochastic Systems With Application to Stochastic Stabilization”, IEEE Trans. Automat. Contr., 61:1 (2016), 240
Latifa Debbi, “Well-Posedness of the Multidimensional Fractional Stochastic Navier–Stokes Equations on the Torus and on Bounded Domains”, J. Math. Fluid Mech., 18:1 (2016), 25
Jean-François Chassagneux, Antoine Jacquier, Ivo Mihaylov, “An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients”, SIAM J. Finan. Math., 7:1 (2016), 993
Martin Hairer, Martin Hutzenthaler, Arnulf Jentzen, “Loss of regularity for Kolmogorov equations”, Ann. Probab., 43:2 (2015)
Chaman Kumar, Sotirios Sabanis, “Strong Convergence of Euler Approximations of Stochastic Differential Equations with Delay Under Local Lipschitz Condition”, Stochastic Analysis and Applications, 32:2 (2014), 207
Martin Hutzenthaler, Arnulf Jentzen, Peter E. Kloeden, “Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations”, Ann. Appl. Probab., 23:5 (2013)
Ji Cheng Liu, “Rate of convergence of Euler's approximations for SDEs with non-Lipschitz coefficients”, Acta. Math. Sin.-English Ser., 29:8 (2013), 1555
Istvan Gyöngy, Sotirios Sabanis, “A Note on Euler Approximations for Stochastic Differential Equations with Delay”, Appl Math Optim, 68:3 (2013), 391
Jerzy Motyl, “Stochastic Itô inclusion with upper separated multifunctions”, Journal of Mathematical Analysis and Applications, 400:2 (2013), 505