Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 2, Pages 266–291
DOI: https://doi.org/10.4213/tvp107
(Mi tvp107)
 

This article is cited in 10 scientific papers (total in 10 papers)

Probability inequalities for the Galton–Watson critical process

S. V. Nagaeva, V. I. Vakhtel'b

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Technische Universität München
References:
Abstract: The upper bounds for the large deviation probabilities of a critical Galton–Watson process are derived under various conditions on the offspring distribution.
Keywords: Galton–Watson process, martingale, Doob inequality, Cramèr's condition, Chebyshev inequality.
Received: 23.07.2002
Revised: 15.01.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 2, Pages 225–247
DOI: https://doi.org/10.1137/S0040585X97981640
Bibliographic databases:
Language: Russian
Citation: S. V. Nagaev, V. I. Vakhtel', “Probability inequalities for the Galton–Watson critical process”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 266–291; Theory Probab. Appl., 50:2 (2006), 225–247
Citation in format AMSBIB
\Bibitem{NagWac05}
\by S.~V.~Nagaev, V.~I.~Vakhtel'
\paper Probability inequalities for the Galton--Watson critical process
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 2
\pages 266--291
\mathnet{http://mi.mathnet.ru/tvp107}
\crossref{https://doi.org/10.4213/tvp107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2221712}
\zmath{https://zbmath.org/?q=an:05031074}
\elib{https://elibrary.ru/item.asp?id=9153122}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 225--247
\crossref{https://doi.org/10.1137/S0040585X97981640}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238760000005}
Linking options:
  • https://www.mathnet.ru/eng/tvp107
  • https://doi.org/10.4213/tvp107
  • https://www.mathnet.ru/eng/tvp/v50/i2/p266
  • This publication is cited in the following 10 articles:
    1. Dou-dou Li, Wan-lin Shi, Mei Zhang, “Large Deviations for a Critical Galton-Watson Branching Process”, Acta Math. Appl. Sin. Engl. Ser., 2024  crossref
    2. 聪 彭, “Probability Inequalities for Weighted Branching Processes in Random Environments”, AAM, 13:08 (2024), 4043  crossref
    3. Sh. K. Formanov, “Refinement of the Main Lemmas of the Theory of Critical Branching Processes”, Lobachevskii J Math, 45:7 (2024), 3290  crossref
    4. Li D.D. Zhang M., “Asymptotic Behaviors For Critical Branching Processes With Immigration”, Acta. Math. Sin.-English Ser., 35:4 (2019), 537–549  crossref  mathscinet  zmath  isi  scopus
    5. Hautphenne S., “a Structured Markov Chain Approach To Branching Processes”, Stoch. Models, 31:3 (2015), 403–432  crossref  mathscinet  zmath  isi  elib  scopus
    6. S. V. Nagaev, “Probability inequalities for Galton–Watson processes”, Theory Probab. Appl., 59:4 (2015), 611–640  mathnet  crossref  crossref  isi  elib
    7. V. I. Wachtel, D. E. Denisov, D. A. Korshunov, “Tail asymptotics for the supercritical Galton–Watson process in the heavy-tailed case”, Proc. Steklov Inst. Math., 282 (2013), 273–297  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. V. A. Vatutin, V. I. Vakhtel', K. Fleischmann, “Critical Galton–Watson process: The maximum of total progenies within a large window”, Theory Probab. Appl., 52:3 (2008), 470–492  mathnet  crossref  crossref  mathscinet  isi  elib
    9. V. I. Vakhtel', “Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails”, Theory Probab. Appl., 52:4 (2008), 674–688  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. S. V. Nagaev, “On probability and moment inequalities for supermartingales and martingales”, Theory Probab. Appl., 51:2 (2007), 367–377  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:663
    Full-text PDF :234
    References:96
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025