Abstract:
The upper bounds for the large deviation probabilities of a critical Galton–Watson process are derived under various conditions on the offspring distribution.
Citation:
S. V. Nagaev, V. I. Vakhtel', “Probability inequalities for the Galton–Watson critical process”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 266–291; Theory Probab. Appl., 50:2 (2006), 225–247
S. V. Nagaev, “Probability inequalities for Galton–Watson processes”, Theory Probab. Appl., 59:4 (2015), 611–640
V. I. Wachtel, D. E. Denisov, D. A. Korshunov, “Tail asymptotics for the supercritical Galton–Watson process in the heavy-tailed case”, Proc. Steklov Inst. Math., 282 (2013), 273–297
V. A. Vatutin, V. I. Vakhtel', K. Fleischmann, “Critical Galton–Watson process: The maximum of total progenies within a large window”, Theory Probab. Appl., 52:3 (2008), 470–492
V. I. Vakhtel', “Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails”, Theory Probab. Appl., 52:4 (2008), 674–688
S. V. Nagaev, “On probability and moment inequalities for supermartingales and martingales”, Theory Probab. Appl., 51:2 (2007), 367–377