Abstract:
The probability inequality for maxk⩽nSk, where Sk=∑kj=1Xj, is proved under the assumption that the sequence Sk, k=1,…,n is a supermartingale. This inequality is stated in terms of probabilities P(Xj>y) and conditional variances of random variables Xj, j=1,…,n. As a simple consequence the well-known moment inequality due to Burkholder is deduced. Numerical bounds are given for constants in Burkholder's inequality.
Keywords:
expectation, martingale, supermartingale, Burkholder inequality, Bernstein and Bennet–Hoeffding inequalities, Rosenthal inequality, Fuk's inequality, separable Banach space, filtered probability space.
Citation:
S. V. Nagaev, “On probability and moment inequalities for supermartingales and martingales”, Teor. Veroyatnost. i Primenen., 51:2 (2006), 391–400; Theory Probab. Appl., 51:2 (2007), 367–377
\Bibitem{Nag06}
\by S.~V.~Nagaev
\paper On probability and moment inequalities for supermartingales and martingales
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 2
\pages 391--400
\mathnet{http://mi.mathnet.ru/tvp62}
\crossref{https://doi.org/10.4213/tvp62}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324210}
\zmath{https://zbmath.org/?q=an:1122.60046}
\elib{https://elibrary.ru/item.asp?id=9242431}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 2
\pages 367--377
\crossref{https://doi.org/10.1137/S0040585X97982438}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000248083200013}
\elib{https://elibrary.ru/item.asp?id=13547195}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34447577015}
Linking options:
https://www.mathnet.ru/eng/tvp62
https://doi.org/10.4213/tvp62
https://www.mathnet.ru/eng/tvp/v51/i2/p391
This publication is cited in the following 2 articles:
E. L. Presman, “Estimation of the Constant in a Burkholder Inequality for Supermartingales and Martingales”, Theory Probab. Appl., 53:1 (2009), 173–179
Nagaev S.V., “On probability and moment inequalities for supermartingales and martingales”, Acta Appl. Math., 97:1-3 (2007), 151–162