Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 1, Pages 47–65
DOI: https://doi.org/10.4213/tmf9748
(Mi tmf9748)
 

This article is cited in 4 scientific papers (total in 4 papers)

Spectrum of the Landau Hamiltonian with a periodic electric potential

L. I. Danilov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
Full-text PDF (514 kB) Citations (4)
References:
Abstract: We define a class of periodic electric potentials for which the spectrum of the two-dimensional Schrödinger operator is absolutely continuous in the case of a homogeneous magnetic field BB with a rational flux η=(2π)1Bv(K)η=(2π)1Bv(K), where v(K)v(K) is the area of an elementary cell KK in the lattice of potential periods. Using properties of functions in this class, we prove that in the space of periodic electric potentials in L2loc(R2) with a given period lattice and identified with L2(K), there exists a second-category set (in the sense of Baire) such that for any electric potential in this set and any homogeneous magnetic field with a rational flow η, the spectrum of the two-dimensional Schrödinger operator is absolutely continuous.
Keywords: two-dimensional Schrödinger operator, absolute spectrum continuity, periodic potential, homogeneous magnetic field.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations AAAA-A16-116021010082-8
This research is supported by the financial program AAAA-A16-116021010082-8.
Received: 15.05.2019
Revised: 15.05.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 1, Pages 41–57
DOI: https://doi.org/10.1134/S0040577920010055
Bibliographic databases:
Document Type: Article
MSC: 35P05
Language: Russian
Citation: L. I. Danilov, “Spectrum of the Landau Hamiltonian with a periodic electric potential”, TMF, 202:1 (2020), 47–65; Theoret. and Math. Phys., 202:1 (2020), 41–57
Citation in format AMSBIB
\Bibitem{Dan20}
\by L.~I.~Danilov
\paper Spectrum of the~Landau Hamiltonian with a~periodic electric potential
\jour TMF
\yr 2020
\vol 202
\issue 1
\pages 47--65
\mathnet{http://mi.mathnet.ru/tmf9748}
\crossref{https://doi.org/10.4213/tmf9748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045704}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202...41D}
\elib{https://elibrary.ru/item.asp?id=42905223}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 1
\pages 41--57
\crossref{https://doi.org/10.1134/S0040577920010055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000521153500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082337235}
Linking options:
  • https://www.mathnet.ru/eng/tmf9748
  • https://doi.org/10.4213/tmf9748
  • https://www.mathnet.ru/eng/tmf/v202/i1/p47
  • This publication is cited in the following 4 articles:
    1. L. I. Danilov, “On the spectrum of the Landau Hamiltonian perturbed by a periodic smooth electric potential”, Theoret. and Math. Phys., 221:3 (2024), 2165–2176  mathnet  crossref  crossref  adsnasa
    2. L. I. Danilov, “On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential”, Sb. Math., 214:12 (2023), 1721–1750  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. L. I. Danilov, “O spektre mnogomernogo periodicheskogo magnitnogo operatora Shredingera s singulyarnym elektricheskim potentsialom”, Izv. IMI UdGU, 58 (2021), 18–47  mathnet  crossref
    4. L. I. Danilov, “O spektre gamiltoniana Landau s periodicheskim elektricheskim potentsialom VLploc(R2), p>1”, Izv. IMI UdGU, 55 (2020), 42–59  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :75
    References:57
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025