Abstract:
We consider the two-dimensional Shrödinger operator ˆHB+V with a homogeneous
magnetic field B∈R and with an electric potential V which belongs to the space LpΛ(R2;R) of Λ -periodic real-valued functions from the space Lploc(R2), p>1. The magnetic field B is supposed to have the rational flux η=(2π)−1Bv(K)∈Q where v(K) denotes the area of the elementary cell K of the period lattice Λ⊂R2. Given p>1 and the period lattice Λ, we prove that in the Banach space (LpΛ(R2;R),‖⋅‖Lp(K)) there exists a typical set O in the sense of Baire (which
contains a dense Gδ -set) such that the spectrum of the operator ˆHB+V is absolutely continuous for any
electric potential V∈O and for any homogeneous magnetic field B with the rational flux η∈Q.
Keywords:
two-dimensional Schrödinger operator, periodic electric potential, homogeneous magnetic field, spectrum.
Citation:
L. I. Danilov, “On the spectrum of a Landau Hamiltonian with a periodic electric potential V∈Lploc(R2),
p>1”, Izv. IMI UdGU, 55 (2020), 42–59
\Bibitem{Dan20}
\by L.~I.~Danilov
\paper On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
$p>1$
\jour Izv. IMI UdGU
\yr 2020
\vol 55
\pages 42--59
\mathnet{http://mi.mathnet.ru/iimi390}
\crossref{https://doi.org/10.35634/2226-3594-2020-55-04}
\elib{https://elibrary.ru/item.asp?id=42949300}
Linking options:
https://www.mathnet.ru/eng/iimi390
https://www.mathnet.ru/eng/iimi/v55/p42
This publication is cited in the following 3 articles:
L. I. Danilov, “On the spectrum of the Landau Hamiltonian perturbed by a periodic smooth electric potential”, Theoret. and Math. Phys., 221:3 (2024), 2165–2176
L. I. Danilov, “On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential”, Sb. Math., 214:12 (2023), 1721–1750
L. I. Danilov, “O spektre mnogomernogo periodicheskogo magnitnogo operatora Shredingera s singulyarnym elektricheskim potentsialom”, Izv. IMI UdGU, 58 (2021), 18–47