Loading [MathJax]/jax/output/CommonHTML/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 194, Number 1, Pages 39–70
DOI: https://doi.org/10.4213/tmf9379
(Mi tmf9379)
 

This article is cited in 13 scientific papers (total in 13 papers)

Nonequilibrium statistical operator method and generalized kinetic equations

A. L. Kuzemsky

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
References:
Abstract: We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.
Keywords: nonequilibrium statistical physics, irreversible process, nonequilibrium statistical operator method, open system, generalized kinetic equation, damped Schrödinger-type equation, neutron scattering, generalized Van Hove formula.
Received: 01.04.2017
Revised: 01.05.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 194, Issue 1, Pages 30–56
DOI: https://doi.org/10.1134/S004057791801004X
Bibliographic databases:
Document Type: Article
PACS: 05.30.-d, 05.70.Ln
Language: Russian
Citation: A. L. Kuzemsky, “Nonequilibrium statistical operator method and generalized kinetic equations”, TMF, 194:1 (2018), 39–70; Theoret. and Math. Phys., 194:1 (2018), 30–56
Citation in format AMSBIB
\Bibitem{Kuz18}
\by A.~L.~Kuzemsky
\paper Nonequilibrium statistical operator method and generalized kinetic equations
\jour TMF
\yr 2018
\vol 194
\issue 1
\pages 39--70
\mathnet{http://mi.mathnet.ru/tmf9379}
\crossref{https://doi.org/10.4213/tmf9379}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740303}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...194...30K}
\elib{https://elibrary.ru/item.asp?id=32428141}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 194
\issue 1
\pages 30--56
\crossref{https://doi.org/10.1134/S004057791801004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426363500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042684409}
Linking options:
  • https://www.mathnet.ru/eng/tmf9379
  • https://doi.org/10.4213/tmf9379
  • https://www.mathnet.ru/eng/tmf/v194/i1/p39
  • This publication is cited in the following 13 articles:
    1. A. Semenov, M. Semenova, Yu. Bebikhov, I. Yakushev, “Mathematical modeling of physical processes in metals and ordered alloys”, Robotics, Machinery and Engineering Technology for Precision Agriculture, Smart Innovation, Systems and Technologies, 247, 2022, 437  crossref
    2. M. Veysman, G. Roepke, H. Reinholz, “Dynamical conductivity of warm dense matter from correlation functions with account for interband transitions”, Phys. Plasmas, 28:10 (2021), 103303  crossref  isi
    3. Rodrigues C.G., “Electron Mobility in Bulk N-Doped Sic-Polytypes 3C-Sic, 4H-Sic, and 6H-Sic: a Comparison”, Semiconductors, 55:7 (2021), 625–632  crossref  isi
    4. C. G. Rodrigues, R. Luzzi, “Nonlinear charge transport in highly polar semiconductors: gan, aln, inn and gaas”, Pramana-J. Phys., 95:1 (2021), 44  crossref  isi
    5. A. L. Kuzemsky, “Time evolution of open nonequilibrium systems and irreversibility”, Phys. Part. Nuclei, 51:4 (2020), 766–771  crossref  isi  scopus
    6. R. T. Ferracioli, C. G. Rodrigues, R. Luzzi, “Anisotropic carrier transport in n-doped 6h-sic”, Phys. Solid State, 62:1 (2020), 110–115  crossref  isi
    7. Kuzemsky A.L., “In Search of Time Lost: Asymmetry of Time and Irreversibility in Natural Processes”, Found. Sci., 25:3 (2020), 597–645  crossref  isi
    8. J. L. Vasconcelos, C. G. Rodrigues, R. Luzzi, “Study of electron transport in 4h-sic by using nonequilibrium statistical ensemble formalism”, Braz. J. Phys., 49:4 (2019), 494–501  crossref  isi
    9. J. L. Vasconcelos, C. G. Rodrigues, R. Luzzi, “Anisotropic hole drift velocity in 4h-sic”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 249 (2019), 114426  crossref  isi  scopus
    10. A. M. D. Correa, C. G. Rodrigues, R. Luzzi, “Electron transport in bulk n-doped 3c-sic by using a non-equilibrium quantum kinetic theory”, Eur. Phys. J. B, 92:11 (2019), 261  crossref  isi  scopus
    11. Mikhail Veysman, Gerd Röpke, Heidi Reinholz, “Application of the Non-Equilibrium Statistical Operator Method to the Dynamical Conductivity of Metallic and Classical Plasmas”, Particles, 2:2 (2019), 242  crossref
    12. G. Röpke, “Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method”, Theoret. and Math. Phys., 194:1 (2018), 74–104  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    13. Kuzemsky A.L., “Temporal Evolution, Directionality of Time and Irreversibility”, Riv. Nuovo Cimento, 41:10 (2018), 513–574  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1636
    Full-text PDF :160
    References:65
    First page:17
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025