Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 194, Number 1, Pages 7–38
DOI: https://doi.org/10.4213/tmf9362
(Mi tmf9362)
 

This article is cited in 18 scientific papers (total in 18 papers)

Statistical irreversible thermodynamics in the framework of Zubarev's nonequilibrium statistical operator method

R. Luzzia, A. R. Vasconcellosa, J. G. Ramosa, C. G. Rodriguesb

a Department of Condensed Matter Physics, Institute of Physics "Gleb Wataghin", State University of Campinas (UNICAMP), Campinas, Brazil
b Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, Goiánia, Goiás, Brazil
References:
Abstract: We describe the formalism of statistical irreversible thermodynamics constructed based on Zubarev's nonequilibrium statistical operator (NSO) method, which is a powerful and universal tool for investigating the most varied physical phenomena. We present brief overviews of the statistical ensemble formalism and statistical irreversible thermodynamics. The first can be constructed either based on a heuristic approach or in the framework of information theory in the Jeffreys–Jaynes scheme of scientific inference; Zubarev and his school used both approaches in formulating the NSO method. We describe the main characteristics of statistical irreversible thermodynamics and discuss some particular considerations of several authors. We briefly describe how Rosenfeld, Bohr, and Prigogine proposed to derive a thermodynamic uncertainty principle.
Keywords: irreversible thermodynamics, information theory, statistical mechanics.
Funding agency Grant number
Fundação de Amparo à Pesquisa do Estado de São Paulo
FAPEG - Fundação de Amparo á Pesquisa do Estado de Goiás
This research was supported in part by the São Paulo State Research Agency (FAPESP) and the Goiás State Research Agency (FAPEG).
Received: 01.03.2017
Revised: 27.03.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 194, Issue 1, Pages 4–29
DOI: https://doi.org/10.1134/S0040577918010038
Bibliographic databases:
Document Type: Article
PACS: 67.10.Jn; 05.70.Ln; 68.65.-k; 81.05.Ea
Language: Russian
Citation: R. Luzzi, A. R. Vasconcellos, J. G. Ramos, C. G. Rodrigues, “Statistical irreversible thermodynamics in the framework of Zubarev's nonequilibrium statistical operator method”, TMF, 194:1 (2018), 7–38; Theoret. and Math. Phys., 194:1 (2018), 4–29
Citation in format AMSBIB
\Bibitem{LuzVasRam18}
\by R.~Luzzi, A.~R.~Vasconcellos, J.~G.~Ramos, C.~G.~Rodrigues
\paper Statistical irreversible thermodynamics in the~framework of Zubarev's nonequilibrium statistical operator method
\jour TMF
\yr 2018
\vol 194
\issue 1
\pages 7--38
\mathnet{http://mi.mathnet.ru/tmf9362}
\crossref{https://doi.org/10.4213/tmf9362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740302}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...194....4L}
\elib{https://elibrary.ru/item.asp?id=32428140}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 194
\issue 1
\pages 4--29
\crossref{https://doi.org/10.1134/S0040577918010038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426363500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042712329}
Linking options:
  • https://www.mathnet.ru/eng/tmf9362
  • https://doi.org/10.4213/tmf9362
  • https://www.mathnet.ru/eng/tmf/v194/i1/p7
  • This publication is cited in the following 18 articles:
    1. V. V. Ryazanov, “Comparison of extended irreversible thermodynamics and nonequilibrium statistical operator method with thermodynamics based on a distribution containing the first-passage time”, Continuum Mech. Thermodyn., 2024  crossref
    2. V. V. Opyatyuk, I. L. Kozlov, K. D. Karchev, S. V. Vistiak, O. I. Kozlov, R. Turmanidze, “Simulation of point defects formation in the fuel element of a nuclear power plant's wave reactor”, Journal of Engineering Sciences, 10:1 (2023), F7  crossref
    3. C. G. Rodrigues, C. A. B. Silva, J. G. Ramos, R. Luzzi, “Nonequilibrium ensemble derivation of hydrodynamic heat transport and higher-order generalizations”, Indian J. Phys., 96:2 (2022), 647–657  crossref  isi
    4. J. L. Vasconcelos, C. G. Rodrigues, J. E. de Menezes, M. L. Carneiro, “Transporte de elétrons de condução no semicondutor 4H-SiC submetido a campos elétricos”, Rev. Foco, 15:2 (2022), e345  crossref
    5. C. G. Rodrigues, J. G. Ramos, R. Luzzi, C. A. B. Slva, “Extended Navier-Stokes equations in the framework of higher-order generalized hydrodynamics”, Braz. J. Phys., 51:6 (2021), 1904–1915  crossref  isi
    6. V. V. Ryazanov, “First-passage time and change of entropy”, Eur. Phys. J. B, 94:12 (2021), 242  crossref  isi
    7. Rodrigues C.G., “Electron Mobility in Bulk N-Doped Sic-Polytypes 3C-Sic, 4H-Sic, and 6H-Sic: a Comparison”, Semiconductors, 55:7 (2021), 625–632  crossref  isi
    8. C. Goncalves Rodrigues, R. Luzzi, “Ultrafast dynamics of carriers and phonons of photoinjected double-plasma in aluminium nitride”, Rev. Mex. Fis., 67:2 (2021), 318–323  crossref  isi
    9. C. G. Rodrigues, “Hot carrier dynamics of photoinjected plasma in indium nitride”, Eur. Phys. J. B, 94:4 (2021), 82  crossref  isi
    10. C. G. Rodrigues, J. G. Ramos, C. A. B. Silva, R. Luzzi, “Nonlinear higher-order hydrodynamics: fluids under driven flow and shear pressure”, Phys. Fluids, 33:6 (2021), 067111  crossref  isi
    11. C. G. Rodrigues, R. Luzzi, “Nonlinear charge transport in highly polar semiconductors: gan, aln, inn and gaas”, Pramana-J. Phys., 95:1 (2021), 44  crossref  isi  scopus
    12. R. T. Ferracioli, C. G. Rodrigues, R. Luzzi, “Anisotropic carrier transport in n-doped 6h-sic”, Phys. Solid State, 62:1 (2020), 110–115  crossref  isi
    13. J. G. Ramos, C. G. Rodrigues, C. A. B. Silva, R. Luzzi, “Statistical mesoscopic hydro-thermodynamics: the description of kinetics and hydrodynamics of nonequilibrium processes in single liquids”, Braz. J. Phys., 49:2 (2019), 277–287  crossref  mathscinet  isi  scopus
    14. J. L. Vasconcelos, C. G. Rodrigues, R. Luzzi, “Study of electron transport in 4h-sic by using nonequilibrium statistical ensemble formalism”, Braz. J. Phys., 49:4 (2019), 494–501  crossref  isi
    15. P. K. Galenko, D. Jou, “Rapid solidification as non-ergodic phenomenon”, Phys. Rep.-Rev. Sec. Phys. Lett., 818 (2019), 1–70  crossref  mathscinet  isi
    16. J. L. Vasconcelos, C. G. Rodrigues, R. Luzzi, “Anisotropic hole drift velocity in 4h-sic”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 249 (2019), 114426  crossref  isi
    17. A. M. D. Correa, C. G. Rodrigues, R. Luzzi, “Electron transport in bulk n-doped 3c-sic by using a non-equilibrium quantum kinetic theory”, Eur. Phys. J. B, 92:11 (2019), 261  crossref  isi  scopus
    18. G. Röpke, “Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method”, Theoret. and Math. Phys., 194:1 (2018), 74–104  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :239
    References:68
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025