Abstract:
We describe the formalism of statistical irreversible thermodynamics constructed based on Zubarev's nonequilibrium statistical operator (NSO) method, which is a powerful and universal tool for investigating the most varied physical phenomena. We present brief overviews of the statistical ensemble formalism and statistical irreversible thermodynamics. The first can be constructed either based on a heuristic approach or in the framework of information theory in the Jeffreys–Jaynes scheme of scientific inference; Zubarev and his school used both approaches in formulating the NSO method. We describe the main characteristics of statistical irreversible thermodynamics and discuss some particular considerations of several authors. We briefly describe how Rosenfeld, Bohr, and Prigogine proposed to derive a thermodynamic uncertainty principle.
Keywords:
irreversible thermodynamics, information theory, statistical mechanics.
Citation:
R. Luzzi, A. R. Vasconcellos, J. G. Ramos, C. G. Rodrigues, “Statistical irreversible thermodynamics in the framework of Zubarev's nonequilibrium statistical operator method”, TMF, 194:1 (2018), 7–38; Theoret. and Math. Phys., 194:1 (2018), 4–29
This publication is cited in the following 18 articles:
V. V. Ryazanov, “Comparison of extended irreversible thermodynamics and nonequilibrium statistical operator method with thermodynamics based on a distribution containing the first-passage time”, Continuum Mech. Thermodyn., 2024
V. V. Opyatyuk, I. L. Kozlov, K. D. Karchev, S. V. Vistiak, O. I. Kozlov, R. Turmanidze, “Simulation of point defects formation in the fuel element of a nuclear power plant's wave reactor”, Journal of Engineering Sciences, 10:1 (2023), F7
C. G. Rodrigues, C. A. B. Silva, J. G. Ramos, R. Luzzi, “Nonequilibrium ensemble derivation of hydrodynamic heat transport and higher-order generalizations”, Indian J. Phys., 96:2 (2022), 647–657
J. L. Vasconcelos, C. G. Rodrigues, J. E. de Menezes, M. L. Carneiro, “Transporte de elétrons de condução no semicondutor 4H-SiC submetido a campos elétricos”, Rev. Foco, 15:2 (2022), e345
C. G. Rodrigues, J. G. Ramos, R. Luzzi, C. A. B. Slva, “Extended Navier-Stokes equations in the framework of higher-order generalized hydrodynamics”, Braz. J. Phys., 51:6 (2021), 1904–1915
V. V. Ryazanov, “First-passage time and change of entropy”, Eur. Phys. J. B, 94:12 (2021), 242
Rodrigues C.G., “Electron Mobility in Bulk N-Doped Sic-Polytypes 3C-Sic, 4H-Sic, and 6H-Sic: a Comparison”, Semiconductors, 55:7 (2021), 625–632
C. Goncalves Rodrigues, R. Luzzi, “Ultrafast dynamics of carriers and phonons of photoinjected double-plasma in aluminium nitride”, Rev. Mex. Fis., 67:2 (2021), 318–323
C. G. Rodrigues, “Hot carrier dynamics of photoinjected plasma in indium nitride”, Eur. Phys. J. B, 94:4 (2021), 82
C. G. Rodrigues, J. G. Ramos, C. A. B. Silva, R. Luzzi, “Nonlinear higher-order hydrodynamics: fluids under driven flow and shear pressure”, Phys. Fluids, 33:6 (2021), 067111
C. G. Rodrigues, R. Luzzi, “Nonlinear charge transport in highly polar semiconductors: gan, aln, inn and gaas”, Pramana-J. Phys., 95:1 (2021), 44
R. T. Ferracioli, C. G. Rodrigues, R. Luzzi, “Anisotropic carrier transport in n-doped 6h-sic”, Phys. Solid State, 62:1 (2020), 110–115
J. G. Ramos, C. G. Rodrigues, C. A. B. Silva, R. Luzzi, “Statistical mesoscopic hydro-thermodynamics: the description of kinetics and hydrodynamics of nonequilibrium processes in single liquids”, Braz. J. Phys., 49:2 (2019), 277–287
J. L. Vasconcelos, C. G. Rodrigues, R. Luzzi, “Study of electron transport in 4h-sic by using nonequilibrium statistical ensemble formalism”, Braz. J. Phys., 49:4 (2019), 494–501
P. K. Galenko, D. Jou, “Rapid solidification as non-ergodic phenomenon”, Phys. Rep.-Rev. Sec. Phys. Lett., 818 (2019), 1–70
J. L. Vasconcelos, C. G. Rodrigues, R. Luzzi, “Anisotropic hole drift velocity in 4h-sic”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 249 (2019), 114426
A. M. D. Correa, C. G. Rodrigues, R. Luzzi, “Electron transport in bulk n-doped 3c-sic by using a non-equilibrium quantum kinetic theory”, Eur. Phys. J. B, 92:11 (2019), 261
G. Röpke, “Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method”, Theoret. and Math. Phys., 194:1 (2018), 74–104