Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 3, Pages 473–488
DOI: https://doi.org/10.4213/tmf9286
(Mi tmf9286)
 

This article is cited in 16 scientific papers (total in 16 papers)

Bäcklund transformations for the Jacobi system on an ellipsoid

A. V. Tsiganov

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We consider analogues of auto- and hetero-Bäcklund transformations for the Jacobi system on a three-axes ellipsoid. Using the results in a Weierstrass paper, where the change of times reduces integrating the equations of motion to inverting the Abel mapping, we construct the differential Abel equations and auto-Bäcklund transformations preserving the Poisson bracket with respect to which the equations of motion written in the Weierstrass form are Hamiltonian. Transforming this bracket to the canonical form, we can construct a new integrable system on the ellipsoid with a Hamiltonian of the natural form and with a fourth-degree integral of motion in momenta.
Keywords: integrable system, Bäcklund transformation, Jacobi system on an ellipsoid.
Funding agency Grant number
Russian Science Foundation 15-11-30007
This research was supported by a grant from the Russian Science Foundation (Project No. 15-11-30007).
Received: 14.10.2016
Revised: 21.11.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 3, Pages 1350–1364
DOI: https://doi.org/10.1134/S0040577917090069
Bibliographic databases:
PACS: 02.30.Ik
MSC: 70E40 70H06
Language: Russian
Citation: A. V. Tsiganov, “Bäcklund transformations for the Jacobi system on an ellipsoid”, TMF, 192:3 (2017), 473–488; Theoret. and Math. Phys., 192:3 (2017), 1350–1364
Citation in format AMSBIB
\Bibitem{Tsi17}
\by A.~V.~Tsiganov
\paper B\"acklund transformations for the~Jacobi system on an~ellipsoid
\jour TMF
\yr 2017
\vol 192
\issue 3
\pages 473--488
\mathnet{http://mi.mathnet.ru/tmf9286}
\crossref{https://doi.org/10.4213/tmf9286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3693590}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1350T}
\elib{https://elibrary.ru/item.asp?id=29887814}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 3
\pages 1350--1364
\crossref{https://doi.org/10.1134/S0040577917090069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412094700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030149440}
Linking options:
  • https://www.mathnet.ru/eng/tmf9286
  • https://doi.org/10.4213/tmf9286
  • https://www.mathnet.ru/eng/tmf/v192/i3/p473
  • This publication is cited in the following 16 articles:
    1. Andrey V. Tsiganov, “Integrable Systems on a Sphere, an Ellipsoid and a Hyperboloid”, Regul. Chaotic Dyn., 28:6 (2023), 805–821  mathnet  crossref
    2. Xin-Yi Gao, “Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system”, Chinese Journal of Physics, 86 (2023), 572  crossref  mathscinet
    3. Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan, “Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave system”, Physics Letters A, 457 (2023), 128552  crossref  mathscinet
    4. Andrey V. Tsiganov, “Equivalent Integrable Metrics on the Sphere with Quartic Invariants”, SIGMA, 18 (2022), 094, 19 pp.  mathnet  crossref  mathscinet
    5. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Symbolic computation on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for the water waves”, Chaos Solitons Fractals, 150 (2021), 111066  crossref  mathscinet  isi  scopus
    6. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “In oceanography, acoustics and hydrodynamics: an extended coupled (2+1) -dimensional Burgers system”, Chin. J. Phys., 70 (2021), 264–270  crossref  mathscinet  isi  scopus
    7. B. Zhang, E. Fan, “Riemann-Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions”, Mod. Phys. Lett. B, 35:12 (2021), 2150208  crossref  mathscinet  isi
    8. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Oceanic studies via a variable-coefficient nonlinear dispersive-wave system in the solar system”, Chaos Solitons Fractals, 142 (2021), 110367  crossref  mathscinet  isi
    9. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Scaling transformations, hetero-Backlund transformations and similarity reductions on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for water waves”, Rom. Rep. Phys., 73:2 (2021), 111  mathscinet  isi
    10. A. V. Tsiganov, “Discretization and superintegrability all rolled into one”, Nonlinearity, 33:9 (2020), 4924–4939  crossref  mathscinet  isi
    11. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Hetero-Backlund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics”, Phys. Lett. A, 384:31 (2020), 126788  crossref  mathscinet  isi
    12. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Shallow water in an open sea or a wide channel: auto- and non-auto-Backlund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system”, Chaos Solitons Fractals, 138 (2020), 109950  crossref  mathscinet  isi
    13. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Scaling and hetero-/auto-Backlund transformations with solitons of an extended coupled (2+1)-dimensional Burgers system for the wave processes in hydrodynamics and acoustics”, Mod. Phys. Lett. B, 34:34 (2020), 2050389  crossref  mathscinet  isi
    14. A. V. Tsiganov, “Backlund transformations and divisor doubling”, J. Geom. Phys., 126:SI (2018), 148–158  crossref  mathscinet  zmath  isi  scopus
    15. A. V. Tsiganov, “On exact discretization of cubic-quintic duffing oscillator”, J. Math. Phys., 59:7 (2018), 072703  crossref  mathscinet  zmath  isi  scopus
    16. A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoret. and Math. Phys., 197:3 (2018), 1806–1822  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :125
    References:48
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025