Loading [MathJax]/jax/output/SVG/config.js
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 094, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.094
(Mi sigma1890)
 

This article is cited in 1 scientific paper (total in 1 paper)

Equivalent Integrable Metrics on the Sphere with Quartic Invariants

Andrey V. Tsiganov

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (378 kB) Citations (1)
References:
Abstract: We discuss canonical transformations relating well-known geodesic flows on the cotangent bundle of the sphere with a set of geodesic flows with quartic invariants. By adding various potentials to the corresponding geodesic Hamiltonians, we can construct new integrable systems on the sphere with quartic invariants.
Keywords: integrable metrics, canonical transformations, two-dimensional sphere.
Funding agency Grant number
Russian Science Foundation 21-11-00141
The work was supported by the Russian Science Foundation (project 21-11-00141).
Received: March 31, 2022; in final form December 4, 2022; Published online December 6, 2022
Bibliographic databases:
Document Type: Article
MSC: 37J35, 70H06, 70H45
Language: English
Citation: Andrey V. Tsiganov, “Equivalent Integrable Metrics on the Sphere with Quartic Invariants”, SIGMA, 18 (2022), 094, 19 pp.
Citation in format AMSBIB
\Bibitem{Tsi22}
\by Andrey~V.~Tsiganov
\paper Equivalent Integrable Metrics on the Sphere with Quartic Invariants
\jour SIGMA
\yr 2022
\vol 18
\papernumber 094
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma1890}
\crossref{https://doi.org/10.3842/SIGMA.2022.094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4517949}
Linking options:
  • https://www.mathnet.ru/eng/sigma1890
  • https://www.mathnet.ru/eng/sigma/v18/p94
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :23
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025