Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 186, Number 2, Pages 191–220
DOI: https://doi.org/10.4213/tmf8958
(Mi tmf8958)
 

This article is cited in 36 scientific papers (total in 36 papers)

Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach

V. B. Matveevab, A. O. Smirnova

a St. Petersburg State University for Aerospace Instrumentation (SUAI), St. Petersburg, Russia
b Institut de Mathématiques de Bourgogne, Université de Bourgogne-Franche Comté, Dijon, France
References:
Abstract: We describe a unified structure of solutions for all equations of the Ablowitz–Kaup–Newell–Segur hierarchy and their combinations. We give examples of solutions that satisfy different equations for different parameter values. In particular, we consider a rank-2 quasirational solution that can be used to investigate many integrable models in nonlinear optics. An advantage of our approach is the possibility to investigate changes in the behavior of a solution resulting from changing the model.
Keywords: rogue wave, freak wave, nonlinear Schrödinger equation, Hirota equation, AKNS hierarchy.
Received: 28.04.2015
Revised: 31.08.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 186, Issue 2, Pages 156–182
DOI: https://doi.org/10.1134/S0040577916020033
Bibliographic databases:
MSC: 35Q55; 37C55
Language: Russian
Citation: V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach”, TMF, 186:2 (2016), 191–220; Theoret. and Math. Phys., 186:2 (2016), 156–182
Citation in format AMSBIB
\Bibitem{MatSmi16}
\by V.~B.~Matveev, A.~O.~Smirnov
\paper Solutions of the~Ablowitz--Kaup--Newell--Segur hierarchy equations of the~``rogue wave'' type: A~unified approach
\jour TMF
\yr 2016
\vol 186
\issue 2
\pages 191--220
\mathnet{http://mi.mathnet.ru/tmf8958}
\crossref{https://doi.org/10.4213/tmf8958}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462749}
\elib{https://elibrary.ru/item.asp?id=25707849}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 2
\pages 156--182
\crossref{https://doi.org/10.1134/S0040577916020033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373359400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962361555}
Linking options:
  • https://www.mathnet.ru/eng/tmf8958
  • https://doi.org/10.4213/tmf8958
  • https://www.mathnet.ru/eng/tmf/v186/i2/p191
  • This publication is cited in the following 36 articles:
    1. A. B. Khasanov, Kh. N. Normurodov, T. G. Khasanov, “Integration of a Nonlinear Sine-Gordon–Liouville-Type Equation in the Class of Periodic Infinite-Gap Functions”, Ukr Math J, 76:8 (2025), 1381  crossref
    2. A. B. Khasanov, R. Kh. Eshbekov, T. G. Hasanov, “Integration of a non-linear Hirota type equation with additional terms”, Izv. Math., 89:1 (2025), 196–219  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. A. B. Khasanov, T. G. Khasanov, “The Cauchy Problem for the Nonlinear Complex Modified Korteweg-de Vries Equation with Additional Terms in the Class of Periodic Infinite-Gap Functions”, Sib Math J, 65:4 (2024), 846  crossref
    4. A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya nelineinogo kompleksnogo modifitsirovannogo uravneniya Kortevega — de Friza (kmKdF) s dopolnitelnymi chlenami v klasse periodicheskikh beskonechnozonnykh funktsii”, Sib. matem. zhurn., 65:4 (2024), 735–759  mathnet  crossref
    5. A. B. Khasanov, Kh. N. Normurodov, T. G. Khasanov, “Integration of a nonlinear sine-Gordon–Liouville-type equation in the class of periodic infinite-gap functions”, Ukr. Mat. Zhurn., 76:8 (2024), 1217  crossref
    6. A. B. Khasanov, U. O. Xudayorov, “Integration of the Modified Korteweg–de Vries–Liouville Equation in the Class of Periodic Infinite-Gap Functions”, Math. Notes, 114:6 (2023), 1247–1259  mathnet  crossref  crossref
    7. Aknazar Khasanov, Khozhimurod Normurodov, Ulugbek Khudaerov, “Zadacha Koshi dlya nelineinogo uravneniya tipa sinus-Gordona v klasse periodicheskikh funktsii”, VOGUMFT, 2023, no. 1 (2), 210  crossref
    8. A. B Khasanov, Kh. N Normurodov, U. O Khudaerov, “Cauchy Problem for the Nonlinear Liouville Equation in the Class of Periodic Infinite-Gap Functions”, Differentsialnye uravneniya, 59:10 (2023), 1412  crossref
    9. A. B. Khasanov, Kh. N. Normurodov, U. O. Khudayorov, “Cauchy Problem for the Nonlinear Liouville Equation in the Class of Periodic Infinite-Gap Functions”, Diff Equat, 59:10 (2023), 1413  crossref
    10. A. Khasanov, R. Eshbekov, Kh. Normurodov, “Integration of a Nonlinear Hirota Type Equation with Finite Density in the Class of Periodic Functions”, Lobachevskii J Math, 44:10 (2023), 4329  crossref
    11. Aleksandr O. Smirnov, Eugeni A. Frolov, “On the Propagation Model of Two-Component Nonlinear Optical Waves”, Axioms, 12:10 (2023), 983  crossref
    12. Rizvi S.T.R. Seadawy A.R. Akram U. Younis M. Althobaiti A., “Solitary Wave Solutions Along With Painleve Analysis For the Ablowitz-Kaup-Newell-Segur Water Waves Equation”, Mod. Phys. Lett. B, 36:02 (2022), 2150548  crossref  mathscinet  isi
    13. Zulfiqar A., Ahmad J., “Computational Solutions of Fractional (2+1)-Dimensional Ablowitz-Kaup-Newell-Segur Equation Using An Analytic Method and Application”, Arab. J. Sci. Eng., 47:1 (2022), 1003–1017  crossref  isi
    14. Ciancio A., Yel G., Kumar A., Baskonus H.M., Ilhan E., “On the Complex Mixed Dark-Bright Wave Distributions to Some Conformable Nonlinear Integrable Models”, Fractals-Complex Geom. Patterns Scaling Nat. Soc., 30:01 (2022), 2240018  crossref  isi
    15. V. S. Gerdjikov, Nianhua Li, V. B. Matveev, A. O. Smirnov, “On soliton solutions and soliton interactions of Kulish–Sklyanin and Hirota–Ohta systems”, Theoret. and Math. Phys., 213:1 (2022), 1331–1347  mathnet  crossref  crossref  mathscinet  adsnasa
    16. G. A. Mannonov, A. B. Khasanov, “The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions”, St. Petersburg Math. J., 34:5 (2023), 821–845  mathnet  crossref
    17. Khalil Ahmad, Khudija Bibi, Baowei Feng, “New Function Solutions of Ablowitz-Kaup-Newell-Segur Water Wave Equation via Power Index Method”, Journal of Function Spaces, 2022 (2022), 1  crossref
    18. Ufa Math. J., 13:2 (2021), 135–151  mathnet  crossref  isi
    19. V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551  mathnet  crossref
    20. V. B. Matveev, A. O. Smirnov, “Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples”, Theoret. and Math. Phys., 204:3 (2020), 1154–1165  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:800
    Full-text PDF :232
    References:90
    First page:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025