Abstract:
We describe a unified structure of solutions for all equations of the Ablowitz–Kaup–Newell–Segur hierarchy and their combinations. We give examples of solutions that satisfy different equations for different parameter values. In particular, we consider a rank-2 quasirational solution that can be used to investigate many integrable models in nonlinear optics. An advantage of our approach is the possibility to investigate changes in the behavior of a solution resulting from changing the model.
Citation:
V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach”, TMF, 186:2 (2016), 191–220; Theoret. and Math. Phys., 186:2 (2016), 156–182
This publication is cited in the following 36 articles:
A. B. Khasanov, Kh. N. Normurodov, T. G. Khasanov, “Integration of a Nonlinear Sine-Gordon–Liouville-Type Equation in the Class of Periodic Infinite-Gap Functions”, Ukr Math J, 76:8 (2025), 1381
A. B. Khasanov, R. Kh. Eshbekov, T. G. Hasanov, “Integration of a non-linear Hirota type equation with additional terms”, Izv. Math., 89:1 (2025), 196–219
A. B. Khasanov, T. G. Khasanov, “The Cauchy Problem for the Nonlinear Complex Modified Korteweg-de Vries Equation with Additional Terms in the Class of Periodic Infinite-Gap Functions”, Sib Math J, 65:4 (2024), 846
A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya nelineinogo kompleksnogo modifitsirovannogo uravneniya Kortevega — de Friza (kmKdF) s dopolnitelnymi chlenami v klasse periodicheskikh beskonechnozonnykh funktsii”, Sib. matem. zhurn., 65:4 (2024), 735–759
A. B. Khasanov, Kh. N. Normurodov, T. G. Khasanov, “Integration of a nonlinear sine-Gordon–Liouville-type equation in the class of periodic infinite-gap functions”, Ukr. Mat. Zhurn., 76:8 (2024), 1217
A. B. Khasanov, U. O. Xudayorov, “Integration of the Modified Korteweg–de Vries–Liouville Equation in the Class of Periodic Infinite-Gap Functions”, Math. Notes, 114:6 (2023), 1247–1259
A. B Khasanov, Kh. N Normurodov, U. O Khudaerov, “Cauchy Problem for the Nonlinear Liouville Equation in the Class of Periodic Infinite-Gap Functions”, Differentsialnye uravneniya, 59:10 (2023), 1412
A. B. Khasanov, Kh. N. Normurodov, U. O. Khudayorov, “Cauchy Problem for the Nonlinear Liouville Equation in the Class of Periodic Infinite-Gap Functions”, Diff Equat, 59:10 (2023), 1413
A. Khasanov, R. Eshbekov, Kh. Normurodov, “Integration of a Nonlinear Hirota Type Equation with Finite Density in the Class of Periodic Functions”, Lobachevskii J Math, 44:10 (2023), 4329
Aleksandr O. Smirnov, Eugeni A. Frolov, “On the Propagation Model of Two-Component Nonlinear Optical Waves”, Axioms, 12:10 (2023), 983
Rizvi S.T.R. Seadawy A.R. Akram U. Younis M. Althobaiti A., “Solitary Wave Solutions Along With Painleve Analysis For the Ablowitz-Kaup-Newell-Segur Water Waves Equation”, Mod. Phys. Lett. B, 36:02 (2022), 2150548
Zulfiqar A., Ahmad J., “Computational Solutions of Fractional (2+1)-Dimensional Ablowitz-Kaup-Newell-Segur Equation Using An Analytic Method and Application”, Arab. J. Sci. Eng., 47:1 (2022), 1003–1017
Ciancio A., Yel G., Kumar A., Baskonus H.M., Ilhan E., “On the Complex Mixed Dark-Bright Wave Distributions to Some Conformable Nonlinear Integrable Models”, Fractals-Complex Geom. Patterns Scaling Nat. Soc., 30:01 (2022), 2240018
V. S. Gerdjikov, Nianhua Li, V. B. Matveev, A. O. Smirnov, “On soliton solutions and soliton interactions of Kulish–Sklyanin and Hirota–Ohta systems”, Theoret. and Math. Phys., 213:1 (2022), 1331–1347
G. A. Mannonov, A. B. Khasanov, “The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions”, St. Petersburg Math. J., 34:5 (2023), 821–845
Khalil Ahmad, Khudija Bibi, Baowei Feng, “New Function Solutions of Ablowitz-Kaup-Newell-Segur Water Wave Equation via Power Index Method”, Journal of Function Spaces, 2022 (2022), 1
Ufa Math. J., 13:2 (2021), 135–151
V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551
V. B. Matveev, A. O. Smirnov, “Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples”, Theoret. and Math. Phys., 204:3 (2020), 1154–1165