Abstract:
In this paper, the inverse spectral problem method is used to integrate the nonlinear mKdV–L equation in the class of periodic infinite-gap functions. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of 6 times continuously differentiable periodic infinite-gap functions is proved. It is shown that the sum of a uniformly convergent function series constructed by solving the system of Dubrovin equations and by using the first trace formula satisfies the mKdV–L equations. Moreover, we prove that if the initial function is a real-valued π-periodic analytic function, then the solution of the Cauchy problem for the mKdV–L equation is a real-valued analytic function in the variable x as well; and if the number π2 is a period (respectively, antiperiod) of the initial function, then the number π2 is the period (respectively, antiperiod) in the variable x of the solution of the Cauchy problem for the mKdV–L equations.
Citation:
A. B. Khasanov, U. O. Xudayorov, “Integration of the Modified Korteweg–de Vries–Liouville Equation in the Class of Periodic Infinite-Gap Functions”, Mat. Zametki, 114:6 (2023), 894–908; Math. Notes, 114:6 (2023), 1247–1259
\Bibitem{KhaHud23}
\by A.~B.~Khasanov, U.~O.~Xudayorov
\paper Integration of the Modified Korteweg--de Vries--Liouville Equation in the Class of Periodic Infinite-Gap Functions
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 6
\pages 894--908
\mathnet{http://mi.mathnet.ru/mzm13907}
\crossref{https://doi.org/10.4213/mzm13907}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 6
\pages 1247--1259
\crossref{https://doi.org/10.1134/S0001434623110573}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187899963}
Linking options:
https://www.mathnet.ru/eng/mzm13907
https://doi.org/10.4213/mzm13907
https://www.mathnet.ru/eng/mzm/v114/i6/p894
This publication is cited in the following 2 articles:
A. B. Khasanov, R. Kh. Eshbekov, T. G. Hasanov, “Integration of a non-linear Hirota type equation with additional terms”, Izv. Math., 89:1 (2025), 196–219
A. B. Khasanov, A. A. Abdivokhidov, R. Kh. Eshbekov, “Negative Order Modified Korteweg–de Vries–Liouville (nmKdV-L) Equation in the Class of Periodic Infinite-gap Functions”, Lobachevskii J Math, 45:12 (2024), 6497