Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 116, Number 1, Pages 122–133
DOI: https://doi.org/10.4213/tmf892
(Mi tmf892)
 

This article is cited in 6 scientific papers (total in 6 papers)

Three-particle Calogero model: Supertraces and ideals on the observables algebra

S. E. Konstein

P. N. Lebedev Physical Institute, Russian Academy of Sciences
Full-text PDF (222 kB) Citations (6)
References:
Abstract: The associative observables superalgebra of the three-particle Calogero model giving all its wave functions via the standard Fock procedure has two independent supertraces. When the coupling constant ν is n±1/3 or n+1/2, the existence of two independent supertraces leads to the existence of a nontrivial two-sided ideal in the observables superalgebra for any integer n.
Received: 02.12.1997
English version:
Theoretical and Mathematical Physics, 1998, Volume 116, Issue 1, Pages 836–845
DOI: https://doi.org/10.1007/BF02557126
Bibliographic databases:
Language: Russian
Citation: S. E. Konstein, “Three-particle Calogero model: Supertraces and ideals on the observables algebra”, TMF, 116:1 (1998), 122–133; Theoret. and Math. Phys., 116:1 (1998), 836–845
Citation in format AMSBIB
\Bibitem{Kon98}
\by S.~E.~Konstein
\paper Three-particle Calogero model: Supertraces and ideals on the observables algebra
\jour TMF
\yr 1998
\vol 116
\issue 1
\pages 122--133
\mathnet{http://mi.mathnet.ru/tmf892}
\crossref{https://doi.org/10.4213/tmf892}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700694}
\zmath{https://zbmath.org/?q=an:1050.81551}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 116
\issue 1
\pages 836--845
\crossref{https://doi.org/10.1007/BF02557126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076425700005}
Linking options:
  • https://www.mathnet.ru/eng/tmf892
  • https://doi.org/10.4213/tmf892
  • https://www.mathnet.ru/eng/tmf/v116/i1/p122
  • This publication is cited in the following 6 articles:
    1. Konstein S.E., Tyutin V I., “Connection Between the Ideals Generated By Traces and By Supertraces in the Superalgebras of Observables of Calogero Models”, J. Nonlinear Math. Phys., 27:1 (2020), 7–11  isi
    2. S.E. Konstein, I.V. Tyutin, “Connection between the ideals generated by traces and by supertraces in the superalgebras of observables of Calogero models”, JNMP, 27:1 (2019), 7  crossref
    3. Konstein S.E. Tyutin I.V., “Ideals Generated By Traces Or By Supertraces in the Symplectic Reflection Algebra H-1,H-V(i-2(2M+1))”, J. Nonlinear Math. Phys., 24:3 (2017), 405–425  crossref  mathscinet  isi  scopus  scopus
    4. S. E. Konstein, I. V. Tyutin, “Ideals generated by traces in the algebra of symplectic reflections H1,ν1,ν2(I2(2m))”, Theoret. and Math. Phys., 187:2 (2016), 706–717  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Konstein S.E., Tyutin I.V., “The Number of Independent Traces and Supertraces on Symplectic Reflection Algebras”, J. Nonlinear Math. Phys., 21:3 (2014), 308–335  crossref  mathscinet  isi  scopus  scopus  scopus
    6. Konstein S.E., Tyutin I.V., “Traces on the Algebra of Observables of the Rational Calogero Model Based on the Root System”, J. Nonlinear Math. Phys., 20:2 (2013), 271–294  crossref  mathscinet  isi  elib  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :194
    References:70
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025