Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 2, Pages 297–309
DOI: https://doi.org/10.4213/tmf9072
(Mi tmf9072)
 

This article is cited in 2 scientific papers (total in 2 papers)

Ideals generated by traces in the algebra of symplectic reflections H1,ν1,ν2(I2(2m))

S. E. Konsteinab, I. V. Tyutinac

a Tamm Theory Department, Lebedev Physical Institute, RAS, Moscow, Russia
b Al Farabi Science Research Institute for Experimental and Theoretical Physics, Kazakhstan National University, Almaty, Kazakhstan
c Tomsk State Pedagogical University, Tomsk, Russia
Full-text PDF (523 kB) Citations (2)
References:
Abstract: The associative algebra of symplectic reflections H:=H1,ν1,ν2(I2(2m)) based on the group generated by the root system I2(2m) depends on two parameters, ν1 and ν2. For each value of these parameters, the algebra admits an m-dimensional space of traces. A trace tr is said to be degenerate if the corresponding symmetric bilinear form Btr(x,y)=tr(xy) is degenerate. We find all values of the parameters ν1 and ν2 for which the space of traces contains degenerate traces and the algebra H consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the ν1 and ν2 values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.
Keywords: algebra of symplectic reflections, ideal, trace, supertrace, Coxeter group, group algebra.
Funding agency Grant number
Russian Foundation for Basic Research 14-02-0117
14-01-00489
Ministry of Education and Science of the Republic of Kazakhstan 3106/ГФ4
The research of S. E. Konstein is supported in part by the Russian Foundation for Basic Research (Grant No. 14-02-01171) and the Ministry of Education and Science, Republic of Kazakhstan (Grant No. 3106/GF4). The research of I. V. Tyutin is supported in part by the Russian Foundation for Basic Research (Grant No. 14-01-00489).
Received: 19.10.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 2, Pages 706–717
DOI: https://doi.org/10.1134/S004057791605007X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. E. Konstein, I. V. Tyutin, “Ideals generated by traces in the algebra of symplectic reflections H1,ν1,ν2(I2(2m))”, TMF, 187:2 (2016), 297–309; Theoret. and Math. Phys., 187:2 (2016), 706–717
Citation in format AMSBIB
\Bibitem{KonTyu16}
\by S.~E.~Konstein, I.~V.~Tyutin
\paper Ideals generated by traces in the~algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$
\jour TMF
\yr 2016
\vol 187
\issue 2
\pages 297--309
\mathnet{http://mi.mathnet.ru/tmf9072}
\crossref{https://doi.org/10.4213/tmf9072}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507538}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..706K}
\elib{https://elibrary.ru/item.asp?id=26414427}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 2
\pages 706--717
\crossref{https://doi.org/10.1134/S004057791605007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377250400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84973563438}
Linking options:
  • https://www.mathnet.ru/eng/tmf9072
  • https://doi.org/10.4213/tmf9072
  • https://www.mathnet.ru/eng/tmf/v187/i2/p297
  • This publication is cited in the following 2 articles:
    1. M. A. Vasiliev, “From Coxeter higher-spin theories to strings and tensor models”, J. High Energy Phys., 2018, no. 8, 051  crossref  mathscinet  isi  scopus
    2. S. E. Konstein, I. V. Tyutin, “Ideals generated by traces or by supertraces in the symplectic reflection algebra $H_{1,\nu}(I_2(2m+1))$”, J. Nonlinear Math. Phys., 24:3 (2017), 405–425  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :168
    References:70
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025