Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 165, Number 1, Pages 3–24
DOI: https://doi.org/10.4213/tmf6560
(Mi tmf6560)
 

This article is cited in 16 scientific papers (total in 16 papers)

The equivalence of different approaches for generating multisoliton solutions of the KPII equation

M. Boitia, F. Pempinellia, A. K. Pogrebkovb, B. Prinariac

a Dipartimento di Fisica, Universitáa del Salento and Sezione, INFN, Lecce, Italy
b Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
c Department of Mathematics, University of Colorado, Colorado Springs, USA
References:
Abstract: The unexpectedly rich structure of the multisoliton solutions of the KPII equation has previously been explored using different approaches ranging from the dressing method to twisting transformations and the ττ-function formulation. All these approaches proved useful for displaying different properties of these solutions and the corresponding Jost solutions. The aim of our investigation is to establish explicit formulas relating all these approaches. We discuss some hidden invariance properties of these multisoliton solutions.
Keywords: KPII equation, Bäcklund transformation, tau function, soliton.
Received: 11.03.2010
English version:
Theoretical and Mathematical Physics, 2010, Volume 165, Issue 1, Pages 1237–1255
DOI: https://doi.org/10.1007/s11232-010-0106-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “The equivalence of different approaches for generating multisoliton solutions of the KPII equation”, TMF, 165:1 (2010), 3–24; Theoret. and Math. Phys., 165:1 (2010), 1237–1255
Citation in format AMSBIB
\Bibitem{BoiPemPog10}
\by M.~Boiti, F.~Pempinelli, A.~K.~Pogrebkov, B.~Prinari
\paper The~equivalence of different approaches for generating multisoliton solutions of the~KPII equation
\jour TMF
\yr 2010
\vol 165
\issue 1
\pages 3--24
\mathnet{http://mi.mathnet.ru/tmf6560}
\crossref{https://doi.org/10.4213/tmf6560}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...165.1237B}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 1
\pages 1237--1255
\crossref{https://doi.org/10.1007/s11232-010-0106-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286399600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78249245429}
Linking options:
  • https://www.mathnet.ru/eng/tmf6560
  • https://doi.org/10.4213/tmf6560
  • https://www.mathnet.ru/eng/tmf/v165/i1/p3
  • This publication is cited in the following 16 articles:
    1. Derchyi Wu, “Stability of Kadomtsev–Petviashvili multi-line solitons”, Nonlinearity, 38:1 (2025), 015014  crossref
    2. Gino Biondini, Alexander J Bivolcic, Mark A Hoefer, Antonio Moro, “Two-dimensional reductions of the Whitham modulation system for the Kadomtsev–Petviashvili equation”, Nonlinearity, 37:2 (2024), 025012  crossref
    3. Antonio Moro, Reference Module in Materials Science and Materials Engineering, 2024  crossref
    4. V. S. Gerdjikov, Nianhua Li, V. B. Matveev, A. O. Smirnov, “On soliton solutions and soliton interactions of Kulish–Sklyanin and Hirota–Ohta systems”, Theoret. and Math. Phys., 213:1 (2022), 1331–1347  mathnet  crossref  crossref  mathscinet  adsnasa
    5. Wu D., “The Direct Scattering Problem For Perturbed Kadomtsev-Petviashvili Multi Line Solitons”, J. Math. Phys., 62:9 (2021), 091513  crossref  mathscinet  isi  scopus
    6. Gerdjikov V.S., Smirnov A.O., Matveev V.B., “From Generalized Fourier Transforms to Spectral Curves For the Manakov Hierarchy. i. Generalized Fourier Transforms”, Eur. Phys. J. Plus, 135:8 (2020), 659  crossref  isi
    7. Wu D., “The Direct Scattering Problem For the Perturbed Gr(1,2)(> 0)Kadomtsev-Petviash-Vili II Solitons”, Nonlinearity, 33:12 (2020), 6729–6759  crossref  mathscinet  isi
    8. Biondini G., Hoefer M.A., Moro A., “Integrability, Exact Reductions and Special Solutions of the Kp-Whitham Equations”, Nonlinearity, 33:8 (2020), 4114–4132  crossref  mathscinet  isi
    9. Shai Horowitz, Yair Zarmi, “Kadomtsev–Petviashvili II equation: Structure of asymptotic soliton webs”, Physica D: Nonlinear Phenomena, 300 (2015), 1  crossref
    10. Zarmi Ya., “Vertex Dynamics in Multi-Soliton Solutions of Kadomtsev-Petviashvili II Equation”, Nonlinearity, 27:6 (2014), 1499–1523  crossref  mathscinet  zmath  adsnasa  isi  scopus
    11. Zarmi Ya., “Nonlinear Quantum-Dynamical System Based on the Kadomtsev-Petviashvili II Equation”, J. Math. Phys., 54:6 (2013), 063515  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. V. S. Gerdjikov, “Two-dimensional Toda field equations related to the exceptional algebra g2: Spectral properties of the Lax operators”, Theoret. and Math. Phys., 172:2 (2012), 1085–1096  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    13. M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Extended resolvent of the heat operator with a multisoliton potential”, Theoret. and Math. Phys., 172:2 (2012), 1037–1051  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    14. M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Properties of the solitonic potentials of the heat operator”, Theoret. and Math. Phys., 168:1 (2011), 865–874  mathnet  crossref  crossref  mathscinet  isi
    15. Boiti M., Pempinelli F., Pogrebkov A.K., “Heat operator with pure soliton potential: Properties of Jost and dual Jost solutions”, J Math Phys, 52:8 (2011), 083506  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    16. M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “The equivalence of different approaches for generating multisoliton solutions of the KPII equation”, Theoret. and Math. Phys., 165:1 (2010), 1237–1255  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:821
    Full-text PDF :255
    References:106
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025