Abstract:
We explore variational Poisson–Nijenhuis structures on nonlinear partial
differential equations and establish relations between the Schouten and
Nijenhuis brackets on the initial equation and the Lie bracket of symmetries
on its natural extensions (coverings). This approach allows
constructing a framework for the theory of nonlocal structures.
Citation:
V. A. Golovko, I. S. Krasil'shchik, A. M. Verbovetsky, “Variational Poisson–Nijenhuis structures for partial differential
equations”, TMF, 154:2 (2008), 268–282; Theoret. and Math. Phys., 154:2 (2008), 227–239
This publication is cited in the following 8 articles:
Kiselev A.V., Krutov A.O., “Non-Abelian Lie Algebroids Over Jet Spaces”, J. Nonlinear Math. Phys., 21:2 (2014), 188–213
Kiselev A.V., “Homological Evolutionary Vector Fields in Korteweg-de Vries, Liouville, Maxwell, and Several Other Models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012058
Krasil'shchik I.S., Verbovetsky A.M., Vitolo R., “A Unified Approach to Computation of Integrable Structures”, Acta Appl. Math., 120:1 (2012), 199–218
A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector
fields”, Theoret. and Math. Phys., 167:3 (2011), 772–784
Krasil'shchik J., Verbovetsky A., “Geometry of jet spaces and integrable systems”, J. Geom. Phys., 61:9 (2011), 1633–1674
Hussin V., Kiselev A.V., Krutov A. ., Wolf T., “N=2 supersymmetric a=4-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation”, J. Math. Phys., 51:8 (2010), 083507, 19 pp.
Kiselev A.V., van de Leur J.W., “A family of second Lie algebra structures for symmetries of a dispersionless Boussinesq system”, J. Phys. A, 42:40 (2009), 404011, 8 pp.
Golovko V., Kersten P., Krasil'shchik I., Verbovetsky A., “On integrability of the Camassa-Holm equation and its invariants”, Acta Appl. Math., 101:1-3 (2008), 59–83