Abstract:
We define Lie algebroids over infinite jet spaces and obtain their equivalent representation in terms of homological evolutionary vector fields.
Citation:
A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector
fields”, TMF, 167:3 (2011), 432–447; Theoret. and Math. Phys., 167:3 (2011), 772–784
This publication is cited in the following 10 articles:
Patrick Cabau, Fernand Pelletier, “Structures bihamiltoniennes partielles”, Bulletin des Sciences Mathématiques, 195 (2024), 103485
Kiselev A.V., “The Calculus of Multivectors on Noncommutative Jet Spaces”, J. Geom. Phys., 130 (2018), 130–167
Fairon M., “Introduction to Graded Geometry”, Eur. J. Math., 3:2 (2017), 208–222
Kiselev A.V. Krutov A.O., “Non-Abelian Lie Algebroids Over Jet Spaces”, J. Nonlinear Math. Phys., 21:2 (2014), 188–213
A. V. Kiselev, “The Jacobi identity for graded-commutative variational Schouten bracket revisited”, Phys. Part. Nuclei Lett., 11:7 (2014), 950
Kiselev A.V., “The Geometry of Variations in Batalin-Vilkovisky Formalism”, Xxist International Conference on Integrable Systems and Quantum Symmetries (Isqs21), Journal of Physics Conference Series, 474, eds. Burdik C., Navratil O., Posta S., IOP Publishing Ltd, 2013
Kiselev A.V., “Homological evolutionary vector fields in Korteweg–de Vries, Liouville, Maxwell, and several other models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), J. Phys.: Conf. Ser., 343, 2012, 012058
Pelletier F., “Integrability of weak distributions on Banach manifolds”, Indag. Math. (N.S.), 23:3 (2012), 214–242
Hussin V., Kiselev A.V., “A convenient criterion under which $\mathbb Z_2$-graded operators are Hamiltonian”, Physical and mathematical aspects of symmetry, J. Phys.: Conf. Ser., 284, no. 1, 2011, 012035