Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 3, Pages 432–447
DOI: https://doi.org/10.4213/tmf6652
(Mi tmf6652)
 

This article is cited in 10 scientific papers (total in 10 papers)

Variational Lie algebroids and homological evolutionary vector fields

A. V. Kiselevab, J. W. van de Leura

a Mathematical Institute, University of Utrecht, Utrecht, The Netherlands
b Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
References:
Abstract: We define Lie algebroids over infinite jet spaces and obtain their equivalent representation in terms of homological evolutionary vector fields.
Keywords: Lie algebroid, BRST differential, Poisson structure, integrable system, string theory.
Received: 23.06.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 3, Pages 772–784
DOI: https://doi.org/10.1007/s11232-011-0061-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector fields”, TMF, 167:3 (2011), 432–447; Theoret. and Math. Phys., 167:3 (2011), 772–784
Citation in format AMSBIB
\Bibitem{KisVan11}
\by A.~V.~Kiselev, J.~W.~van de Leur
\paper Variational Lie algebroids and homological evolutionary vector
fields
\jour TMF
\yr 2011
\vol 167
\issue 3
\pages 432--447
\mathnet{http://mi.mathnet.ru/tmf6652}
\crossref{https://doi.org/10.4213/tmf6652}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..772K}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 3
\pages 772--784
\crossref{https://doi.org/10.1007/s11232-011-0061-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293653700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960080827}
Linking options:
  • https://www.mathnet.ru/eng/tmf6652
  • https://doi.org/10.4213/tmf6652
  • https://www.mathnet.ru/eng/tmf/v167/i3/p432
  • This publication is cited in the following 10 articles:
    1. Patrick Cabau, Fernand Pelletier, “Structures bihamiltoniennes partielles”, Bulletin des Sciences Mathématiques, 195 (2024), 103485  crossref
    2. Kiselev A.V., “The Calculus of Multivectors on Noncommutative Jet Spaces”, J. Geom. Phys., 130 (2018), 130–167  crossref  mathscinet  zmath  isi  scopus
    3. Fairon M., “Introduction to Graded Geometry”, Eur. J. Math., 3:2 (2017), 208–222  crossref  mathscinet  zmath  isi  scopus
    4. Kiselev A.V. Krutov A.O., “Non-Abelian Lie Algebroids Over Jet Spaces”, J. Nonlinear Math. Phys., 21:2 (2014), 188–213  crossref  mathscinet  isi  scopus
    5. A. V. Kiselev, “The Jacobi identity for graded-commutative variational Schouten bracket revisited”, Phys. Part. Nuclei Lett., 11:7 (2014), 950  crossref
    6. Kiselev A.V., “The Geometry of Variations in Batalin-Vilkovisky Formalism”, Xxist International Conference on Integrable Systems and Quantum Symmetries (Isqs21), Journal of Physics Conference Series, 474, eds. Burdik C., Navratil O., Posta S., IOP Publishing Ltd, 2013  crossref  isi  scopus
    7. Kiselev A.V., “Homological evolutionary vector fields in Korteweg–de Vries, Liouville, Maxwell, and several other models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), J. Phys.: Conf. Ser., 343, 2012, 012058  crossref  adsnasa  isi  scopus
    8. Kiselev A.V., “On the variational noncommutative Poisson geometry”, Phys. Part. Nuclei, 43:5 (2012), 663–665  crossref  adsnasa  isi  elib  scopus
    9. Pelletier F., “Integrability of weak distributions on Banach manifolds”, Indag. Math. (N.S.), 23:3 (2012), 214–242  crossref  mathscinet  zmath  isi  scopus
    10. Hussin V., Kiselev A.V., “A convenient criterion under which $\mathbb Z_2$-graded operators are Hamiltonian”, Physical and mathematical aspects of symmetry, J. Phys.: Conf. Ser., 284, no. 1, 2011, 012035  crossref  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:520
    Full-text PDF :196
    References:92
    First page:18
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025