Abstract:
We give a uniform interpretation of the classical continuous Chebyshev and Hahn orthogonal polynomials of a discrete variable in terms of the Feigin Lie algebra $\mathfrak{gl}(\lambda)$ for $\lambda\in\mathbb C$. The Chebyshev and Hahn $q$-polynomials admit a similar interpretation, and orthogonal polynomials corresponding to Lie superalgebras can be introduced. We also describe quasi-finite modules over $\mathfrak{gl}(\lambda)$, real forms of this algebra, and the unitarity conditions for quasi-finite modules. Analogues of tensors over $\mathfrak{gl}(\lambda)$ are also introduced.
Citation:
D. A. Leites, A. N. Sergeev, “Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices”, TMF, 123:2 (2000), 205–236; Theoret. and Math. Phys., 123:2 (2000), 582–608
\Bibitem{LeiSer00}
\by D.~A.~Leites, A.~N.~Sergeev
\paper Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
\jour TMF
\yr 2000
\vol 123
\issue 2
\pages 205--236
\mathnet{http://mi.mathnet.ru/tmf599}
\crossref{https://doi.org/10.4213/tmf599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794157}
\zmath{https://zbmath.org/?q=an:1017.17021}
\elib{https://elibrary.ru/item.asp?id=13340347}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 2
\pages 582--608
\crossref{https://doi.org/10.1007/BF02551394}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165897000005}
Linking options:
https://www.mathnet.ru/eng/tmf599
https://doi.org/10.4213/tmf599
https://www.mathnet.ru/eng/tmf/v123/i2/p205
This publication is cited in the following 12 articles:
Bouarroudj S. Krutov A. Leites D. Shchepochkina I., “Non-Degenerate Invariant (Super)Symmetric Bilinear Forms on Simple Lie (Super)Algebras”, Algebr. Represent. Theory, 21:5 (2018), 897–941
Bouarroudj S., Grozman P., Lebedev A., Leites D., “Divided Power (co)homology. Presentations of Simple Finite Dimensional Modular Lie Superalgebras with Cartan Matrix”, Homology Homotopy Appl, 12:1 (2010), 237–278
Bouarroudj S., Grozman P., Leites D., “Defining Relations of Almost Affine (Hyperbolic) Lie Superalgebras”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 163–168
A. V. Lebedev, “On the Bott–Borel–Weil Theorem”, Math. Notes, 81:3 (2007), 417–421
Ch. Sachse, “Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$”, Theoret. and Math. Phys., 149:1 (2006), 1299–1311
Steven Duplij, Steven Duplij, Steven Duplij, Frans Klinkhamer, Frans Klinkhamer, Anatoli Klimyk, Gert Roepstorff, Dimitry Leites, Dimitry Leites, Concise Encyclopedia of Supersymmetry, 2004, 230
Gargoubi, H, “Algebra gl(lambda) inside the algebra of differential operators on the real line”, Journal of Nonlinear Mathematical Physics, 9:3 (2002), 248
Palev, TD, “Jacobson generators, Fock representations and statistics of sl(n+1)”, Journal of Mathematical Physics, 43:7 (2002), 3850
Grozman, P, “The Shapovalov determinant for the Poisson superalgebras”, Journal of Nonlinear Mathematical Physics, 8:2 (2001), 220
Sergeev, A, “Enveloping superalgebra U(osp (1 vertical bar 2)) and orthogonal polynomials in discrete indeterminate”, Journal of Nonlinear Mathematical Physics, 8:2 (2001), 229
Shreshevskii, IA, “Orthogonalization of graded sets of vectors”, Journal of Nonlinear Mathematical Physics, 8:1 (2001), 54
Sergeev A., “Enveloping algebra of GL(3) and orthogonal polynomials”, Noncommutative Structures in Mathematics and Physics, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 22, 2001, 113–124