Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 2, Pages 205–236
DOI: https://doi.org/10.4213/tmf599
(Mi tmf599)
 

This article is cited in 12 scientific papers (total in 12 papers)

Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices

D. A. Leitesa, A. N. Sergeevb

a Stockholm University
b Balakovo Institute of Technique, Technology and Control
References:
Abstract: We give a uniform interpretation of the classical continuous Chebyshev and Hahn orthogonal polynomials of a discrete variable in terms of the Feigin Lie algebra $\mathfrak{gl}(\lambda)$ for $\lambda\in\mathbb C$. The Chebyshev and Hahn $q$-polynomials admit a similar interpretation, and orthogonal polynomials corresponding to Lie superalgebras can be introduced. We also describe quasi-finite modules over $\mathfrak{gl}(\lambda)$, real forms of this algebra, and the unitarity conditions for quasi-finite modules. Analogues of tensors over $\mathfrak{gl}(\lambda)$ are also introduced.
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 2, Pages 582–608
DOI: https://doi.org/10.1007/BF02551394
Bibliographic databases:
Language: Russian
Citation: D. A. Leites, A. N. Sergeev, “Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices”, TMF, 123:2 (2000), 205–236; Theoret. and Math. Phys., 123:2 (2000), 582–608
Citation in format AMSBIB
\Bibitem{LeiSer00}
\by D.~A.~Leites, A.~N.~Sergeev
\paper Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
\jour TMF
\yr 2000
\vol 123
\issue 2
\pages 205--236
\mathnet{http://mi.mathnet.ru/tmf599}
\crossref{https://doi.org/10.4213/tmf599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794157}
\zmath{https://zbmath.org/?q=an:1017.17021}
\elib{https://elibrary.ru/item.asp?id=13340347}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 2
\pages 582--608
\crossref{https://doi.org/10.1007/BF02551394}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165897000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf599
  • https://doi.org/10.4213/tmf599
  • https://www.mathnet.ru/eng/tmf/v123/i2/p205
  • This publication is cited in the following 12 articles:
    1. Bouarroudj S. Krutov A. Leites D. Shchepochkina I., “Non-Degenerate Invariant (Super)Symmetric Bilinear Forms on Simple Lie (Super)Algebras”, Algebr. Represent. Theory, 21:5 (2018), 897–941  crossref  mathscinet  zmath  isi  scopus
    2. Bouarroudj S., Grozman P., Lebedev A., Leites D., “Divided Power (co)homology. Presentations of Simple Finite Dimensional Modular Lie Superalgebras with Cartan Matrix”, Homology Homotopy Appl, 12:1 (2010), 237–278  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    3. Bouarroudj S., Grozman P., Leites D., “Defining Relations of Almost Affine (Hyperbolic) Lie Superalgebras”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 163–168  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    4. A. V. Lebedev, “On the Bott–Borel–Weil Theorem”, Math. Notes, 81:3 (2007), 417–421  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Ch. Sachse, “Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$”, Theoret. and Math. Phys., 149:1 (2006), 1299–1311  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Steven Duplij, Steven Duplij, Steven Duplij, Frans Klinkhamer, Frans Klinkhamer, Anatoli Klimyk, Gert Roepstorff, Dimitry Leites, Dimitry Leites, Concise Encyclopedia of Supersymmetry, 2004, 230  crossref
    7. Gargoubi, H, “Algebra gl(lambda) inside the algebra of differential operators on the real line”, Journal of Nonlinear Mathematical Physics, 9:3 (2002), 248  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    8. Palev, TD, “Jacobson generators, Fock representations and statistics of sl(n+1)”, Journal of Mathematical Physics, 43:7 (2002), 3850  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    9. Grozman, P, “The Shapovalov determinant for the Poisson superalgebras”, Journal of Nonlinear Mathematical Physics, 8:2 (2001), 220  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    10. Sergeev, A, “Enveloping superalgebra U(osp (1 vertical bar 2)) and orthogonal polynomials in discrete indeterminate”, Journal of Nonlinear Mathematical Physics, 8:2 (2001), 229  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    11. Shreshevskii, IA, “Orthogonalization of graded sets of vectors”, Journal of Nonlinear Mathematical Physics, 8:1 (2001), 54  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    12. Sergeev A., “Enveloping algebra of GL(3) and orthogonal polynomials”, Noncommutative Structures in Mathematics and Physics, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 22, 2001, 113–124  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:596
    Full-text PDF :275
    References:85
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025