Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 149, Number 1, Pages 3–17
DOI: https://doi.org/10.4213/tmf3823
(Mi tmf3823)
 

This article is cited in 6 scientific papers (total in 6 papers)

Sylvester–'t Hooft generators and relations between them for sl(n) and gl(n|n)

Ch. Sachse

Max Planck Institute for Mathematics in the Sciences
Full-text PDF (537 kB) Citations (6)
References:
Abstract: Among the simple finite-dimensional Lie algebras, only sl(n) has two finite-order automorphisms that have no common nonzero eigenvector with the eigenvalue one. It turns out that these automorphisms are inner and form a pair of generators that allow generating all of sl(n) under bracketing. It seems that Sylvester was the first to mention these generators, but he used them as generators of the associative algebra of all n×n matrices Mat(n). These generators appear in the description of elliptic solutions of the classical Yang–Baxter equation, the orthogonal decompositions of Lie algebras, 't Hooft's work on confinement operators in QCD, and various other instances. Here, we give an algorithm that both generates sl(n) and explicitly describes a set of defining relations. For simple (up to the center) Lie superalgebras, analogues of Sylvester generators exist only for gl(n|n). We also compute the relations for this case.
Keywords: defining relations, Lie algebras, Lie superalgebras.
Received: 12.12.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 149, Issue 1, Pages 1299–1311
DOI: https://doi.org/10.1007/s11232-006-0119-0
Bibliographic databases:
Language: Russian
Citation: Ch. Sachse, “Sylvester–'t Hooft generators and relations between them for sl(n) and gl(n|n)”, TMF, 149:1 (2006), 3–17; Theoret. and Math. Phys., 149:1 (2006), 1299–1311
Citation in format AMSBIB
\Bibitem{Sac06}
\by Ch.~Sachse
\paper Sylvester--'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$
\jour TMF
\yr 2006
\vol 149
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/tmf3823}
\crossref{https://doi.org/10.4213/tmf3823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2297107}
\zmath{https://zbmath.org/?q=an:1177.81055}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...149.1299S}
\elib{https://elibrary.ru/item.asp?id=9296918}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 149
\issue 1
\pages 1299--1311
\crossref{https://doi.org/10.1007/s11232-006-0119-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000242294000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750551057}
Linking options:
  • https://www.mathnet.ru/eng/tmf3823
  • https://doi.org/10.4213/tmf3823
  • https://www.mathnet.ru/eng/tmf/v149/i1/p3
  • This publication is cited in the following 6 articles:
    1. Albert V.V., Pascazio S., Devoret M.H., “General Phase Spaces: From Discrete Variables to Rotor and Continuum Limits”, J. Phys. A-Math. Theor., 50:50 (2017), 504002  crossref  mathscinet  zmath  isi  scopus
    2. Moroz A., “Quantum Models With Spectrum Generated By the Flows of Polynomial Zeros”, J. Phys. A-Math. Theor., 47:49 (2014), 495204  crossref  mathscinet  zmath  isi  scopus
    3. Albert V.V., “Quantum Rabi Model for N-State Atoms”, Phys. Rev. Lett., 108:18 (2012), 180401  crossref  adsnasa  isi  scopus
    4. Lebedev A., “Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic 2”, J. Nonlinear Math. Phys., 17, Suppl. 1 (2010), 217–251  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Bouarroudj S., Grozman P., Lebedev A., Leites D., “Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix”, Homology, Homotopy Appl., 12:1 (2010), 237–278  crossref  mathscinet  zmath  isi  elib  scopus
    6. A. V. Lebedev, “On the Bott–Borel–Weil Theorem”, Math. Notes, 81:3 (2007), 417–421  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:402
    Full-text PDF :202
    References:53
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025