Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 83, Number 3, Pages 406–418 (Mi tmf5819)  

This article is cited in 8 scientific papers (total in 8 papers)

Quantum mechanics over non-Archimedean number fields

A. Yu. Khrennikov
References:
Abstract: Schrödinger and Bargmann–Fock representations in non-Archimedean quantum mechanics are realized in the spaces L2(Kn,dx) and L2(Zn,ezzdzdˉz) (K is a non-Archimedean field, and Z=K(τ) is its quadratic extension) by means of the calculus of pseudodifferential operators.
Received: 17.10.1989
English version:
Theoretical and Mathematical Physics, 1990, Volume 83, Issue 3, Pages 623–632
DOI: https://doi.org/10.1007/BF01018032
Bibliographic databases:
Language: Russian
Citation: A. Yu. Khrennikov, “Quantum mechanics over non-Archimedean number fields”, TMF, 83:3 (1990), 406–418; Theoret. and Math. Phys., 83:3 (1990), 623–632
Citation in format AMSBIB
\Bibitem{Khr90}
\by A.~Yu.~Khrennikov
\paper Quantum mechanics over non-Archimedean number fields
\jour TMF
\yr 1990
\vol 83
\issue 3
\pages 406--418
\mathnet{http://mi.mathnet.ru/tmf5819}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1070695}
\zmath{https://zbmath.org/?q=an:0767.46044|0715.46050}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 83
\issue 3
\pages 623--632
\crossref{https://doi.org/10.1007/BF01018032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EX50100009}
Linking options:
  • https://www.mathnet.ru/eng/tmf5819
  • https://www.mathnet.ru/eng/tmf/v83/i3/p406
  • This publication is cited in the following 8 articles:
    1. S. V. Kozyrev, “Methods and Applications of Ultrametric and $p$-Adic Analysis: From Wavelet Theory to Biophysics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S1–S84  mathnet  crossref  crossref  zmath  isi  elib
    2. Anatoly N Kochubei, “p-adic commutation relations”, J. Phys. A: Math. Gen., 29:19 (1996), 6375  crossref
    3. Andrew Khrennikov, “p-adic probability interpretation of Bell's inequality”, Physics Letters A, 200:3-4 (1995), 219  crossref
    4. Andrew Khrennikov, “p-adic probability distributions of hidden variables”, Physica A: Statistical Mechanics and its Applications, 215:4 (1995), 577  crossref
    5. A. Yu. Khrennikov, “$p$-Adic probability theory and its applications. The principle of statistical stabilization of frequencies”, Theoret. and Math. Phys., 97:3 (1993), 1340–1348  mathnet  crossref  mathscinet  zmath  isi
    6. A. Yu. Khrennikov, “Generalized functions on a Non-Archimedean superspace”, Math. USSR-Izv., 39:3 (1992), 1209–1238  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. A. Yu. Khrennikov, “Real non-Archimedean structure of spacetime”, Theoret. and Math. Phys., 86:2 (1991), 121–130  mathnet  crossref  mathscinet  zmath  isi
    8. A. Yu. Khrennikov, “Mathematical methods of non-Archimedean physics”, Russian Math. Surveys, 45:4 (1990), 87–125  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :220
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025