Abstract:
A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrödinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.
This publication is cited in the following 5 articles:
W. A. Zúñiga-Galindo, “Non-Archimedean White Noise, Pseudodifferential Stochastic Equations, and Massive Euclidean Fields”, J Fourier Anal Appl, 23:2 (2017), 288
S. A. Albeverio, J. M. Bayod, C. Perez-Garsia, A. Yu. Khrennikov, R. Cianci, “Non-Archimedean analogues of orthogonal and symmetric operators”, Izv. Math., 63:6 (1999), 1063–1087
Albeverio S., Bayod J.M., Perez-Garcia C., Cianci R., Khrennikov A., “Non-archimedean analogues of orthogonal and symmetric operators and p-adic quantization”, Acta Applicandae Mathematicae, 57:3 (1999), 205–237
A. Yu. Khrennikov, M. Endo, “Unboundedness of a p-adic Gaussian distribution”, Russian Acad. Sci. Izv. Math., 41:2 (1993), 367–375
A. Yu. Khrennikov, “On the theory of infinite-dimensional superspace: reflexive Banach supermodules”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 331–350