Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 92, Number 1, Pages 62–76 (Mi tmf5661)  

This article is cited in 19 scientific papers (total in 19 papers)

Perturbation of the Korteweg–de Vries soliton

L. A. Kalyakin

Institute of Mathematics of Bashkirian Scientific Centre, UB of USSR Academy of Sciences
References:
Abstract: For an arbitrary perturbation operator, equations for the modulation of the parameters of the KdV soiiton are obtained. The asymptotic behavior of the first correction is investigated, and the influence of the leading term of this asymptotic behavior on the soliton phase shift is demonstrated.
Received: 21.03.1991
English version:
Theoretical and Mathematical Physics, 1992, Volume 92, Issue 1, Pages 736–747
DOI: https://doi.org/10.1007/BF01018701
Bibliographic databases:
Language: Russian
Citation: L. A. Kalyakin, “Perturbation of the Korteweg–de Vries soliton”, TMF, 92:1 (1992), 62–76; Theoret. and Math. Phys., 92:1 (1992), 736–747
Citation in format AMSBIB
\Bibitem{Kal92}
\by L.~A.~Kalyakin
\paper Perturbation of the Korteweg--de Vries soliton
\jour TMF
\yr 1992
\vol 92
\issue 1
\pages 62--76
\mathnet{http://mi.mathnet.ru/tmf5661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1256714}
\zmath{https://zbmath.org/?q=an:0787.35095|0761.35097}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 92
\issue 1
\pages 736--747
\crossref{https://doi.org/10.1007/BF01018701}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KX55000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf5661
  • https://www.mathnet.ru/eng/tmf/v92/i1/p62
  • This publication is cited in the following 19 articles:
    1. Sergiy LYASHKO, Valerii SAMOILENKO, Yuliia SAMOILENKO, Ihor GAPYAK, Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1, 2024, 1  crossref
    2. L. A. Kalyakin, “Perturbation of a simple wave: from simulation to asymptotics”, Ufa Math. J., 15:3 (2023), 54–68  mathnet  crossref
    3. Georgy Omel'yanov, Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals, 2018  crossref
    4. G. Omel'yanov, “Propagation and interaction of solitons for nonintegrable equations”, Russ. J. Math. Phys., 23:2 (2016), 225  crossref
    5. Georgy A. Omel'yanov, “Soliton‐type asymptotics for non‐integrable equations: a survey”, Math Methods in App Sciences, 38:10 (2015), 2062  crossref
    6. Samoilenko V.H. Samoilenko Yu.I., “Two-Phase Solitonlike Solutions of the Cauchy Problem For a Singularly Perturbed Korteweg-de-Vries Equation With Variable Coefficients”, Ukr. Math. J., 65:11 (2014), 1681–1697  crossref  isi
    7. Koichi Narahara, “Characterization of partially dissipated solitons in a traveling-wave field-effect transistor”, Communications in Nonlinear Science and Numerical Simulation, 19:3 (2014), 494  crossref
    8. Valeriy Hrygorovych Samoylenko, Yuliya Ivanivna Samoylenko, “Asymptotic multiphase Σ-solutions to the singularly perturbed Korteweg–de Vries equation with variable coefficients”, J Math Sci, 200:3 (2014), 358  crossref
    9. S. A. Kordyukova, “Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq system”, Theoret. and Math. Phys., 154:2 (2008), 250–259  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. A. Veksler, Y. Zarmi, “Perturbative Analysis of Wave Interaction in Nonlinear Systems”, Theoret. and Math. Phys., 144:2 (2005), 1227–1237  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Journal of Mathematical Sciences, 138:6 (2006), 6067–6230  mathnet  crossref  mathscinet  zmath  elib
    12. L. A. Kalyakin, “Asymptotic decay of solutions of the Liouville equation under perturbations”, Math. Notes, 68:2 (2000), 173–184  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. V. A. Lazarev, “Perturbation of a two-soliton solution of the Korteweg–de Vries equation in the case of close amplitudes”, Theoret. and Math. Phys., 118:3 (1999), 341–346  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. Kiselev, OM, “Perturbation theory for the Dirac equation in two-dimensional space”, Journal of Mathematical Physics, 39:4 (1998), 2333  crossref  mathscinet  zmath  adsnasa  isi
    15. L. A. Kalyakin, V. A. Lazarev, “Perturbation of the two-soliton solution of the KdV equation”, Theoret. and Math. Phys., 112:1 (1997), 866–874  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. R. R. Gadyl'shin, O. M. Kiselev, “On nonsolution structure of scattering data under perturbation of two-dimensional soliton for Davey–Stewartson equation II”, Theoret. and Math. Phys., 106:2 (1996), 167–173  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. L. A. Kalyakin, “Asymptotics of the first correction in the perturbation of the N-soliton solution to the KdV equation”, Math. Notes, 58:2 (1995), 814–823  mathnet  crossref  mathscinet  zmath  isi
    18. Y. Matsuno, “Multisoliton perturbation theory for the Benjamin-Ono equation and its application to real physical systems”, Phys. Rev. E, 51:2 (1995), 1471  crossref
    19. Y. Matsuno, “Phase Shift of Interacting Algebraic Solitary Waves in a Two-Layer Fluid System”, Phys. Rev. Lett., 73:10 (1994), 1316  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :165
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025