Abstract:
Bogolyubov's method is used to quantize a boson field in the neighborhood of a two-particle classical solution in the case of a Hamiltonian with an arbitrary continuous symmetry group.
Citation:
A. V. Razumov, O. A. Khrustalev, “Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution”, TMF, 29:3 (1976), 300–308; Theoret. and Math. Phys., 29:3 (1976), 1084–1090
\Bibitem{RazKhr76}
\by A.~V.~Razumov, O.~A.~Khrustalev
\paper Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a~classical solution
\jour TMF
\yr 1976
\vol 29
\issue 3
\pages 300--308
\mathnet{http://mi.mathnet.ru/tmf3466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=456096}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 3
\pages 1084--1090
\crossref{https://doi.org/10.1007/BF01028230}
Linking options:
https://www.mathnet.ru/eng/tmf3466
https://www.mathnet.ru/eng/tmf/v29/i3/p300
This publication is cited in the following 24 articles:
Ostanina V M. Tomasi-Vshivtseva P.A., “Quantization of Nonlinear Fields Using Bogolyubov Variables”, Phys. Part. Nuclei Lett., 18:6 (2021), 648–651
K. A. Sveshnikov, “Nonclassical analogs of solitons in quantum field theory”, Theoret. and Math. Phys., 94:1 (1993), 39–47
K. Sveshnikov, “Non-classical solitons”, Physics Letters B, 313:1-2 (1993), 96
A. V. Shurgaia, “Covariant Quantization of a Field Theory with Particle-like Solutions”, Fortschr. Phys., 41:6 (1993), 553
A. V. Shurgaia, “Covariant Quantization of a Field Theory with Particle-like Solutions”, Fortschr. Phys., 41:6 (1993), 553
Theoret. and Math. Phys., 93:3 (1992), 1345–1360
A. A. Torotadze, A. V. Shurgaya, “Two-dimensional model of the interaction of a nonrelativistic particle with scalar mesons in the strong-coupling limit”, Theoret. and Math. Phys., 76:2 (1988), 826–833
V. B. Tverskoi, “Heisenberg fields in the neighborhood of a classical solution”, Theoret. and Math. Phys., 68:3 (1986), 866–873
S. I. Zlatev, V. A. Matveev, “The problem of infrared divergences in soliton quantization”, Theoret. and Math. Phys., 62:1 (1985), 31–42
V. B. Tverskoi, “Scattering of solitons by quantum excitations”, Theoret. and Math. Phys., 59:2 (1984), 452–458
A. E. Dorokhov, “Covariant quantization of the bag model”, Theoret. and Math. Phys., 61:1 (1984), 998–1012
D. V. Meshcheryakov, “A generalization of the model with $\Phi^4$ interaction”, Theoret. and Math. Phys., 61:3 (1984), 1205–1211
V. G. Bornyakov, O. D. Timofeevskaya, “Bogolyubov transformation in the Lee model”, Theoret. and Math. Phys., 55:2 (1983), 451–458
K. A. Sveshnikov, “Covariant perturbation theory in the neighborhood of a classical solution”, Theoret. and Math. Phys., 55:3 (1983), 553–568
A. V. Shurgaya, “The method of collective variables in relativistic theory”, Theoret. and Math. Phys., 57:3 (1983), 1216–1225
S. I. Zlatev, V. A. Matveev, G. A. Chechelashvili, “The problem of zero-frequency modes in the quantum theory of solitons”, Theoret. and Math. Phys., 50:3 (1982), 211–217
V. G. Bornyakov, “Strong coupling method in a symmetric scalar theory with two sources”, Theoret. and Math. Phys., 51:2 (1982), 476–483
A. V. Shurgaya, “The method of collective variables and the generalized Hamiltonian formalism”, Theoret. and Math. Phys., 45:1 (1980), 873–879