Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 29, Number 3, Pages 300–308 (Mi tmf3466)  

This article is cited in 24 scientific papers (total in 24 papers)

Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution

A. V. Razumov, O. A. Khrustalev
References:
Abstract: Bogolyubov's method is used to quantize a boson field in the neighborhood of a two-particle classical solution in the case of a Hamiltonian with an arbitrary continuous symmetry group.
Received: 18.02.1976
English version:
Theoretical and Mathematical Physics, 1976, Volume 29, Issue 3, Pages 1084–1090
DOI: https://doi.org/10.1007/BF01028230
Bibliographic databases:
Language: Russian
Citation: A. V. Razumov, O. A. Khrustalev, “Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution”, TMF, 29:3 (1976), 300–308; Theoret. and Math. Phys., 29:3 (1976), 1084–1090
Citation in format AMSBIB
\Bibitem{RazKhr76}
\by A.~V.~Razumov, O.~A.~Khrustalev
\paper Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a~classical solution
\jour TMF
\yr 1976
\vol 29
\issue 3
\pages 300--308
\mathnet{http://mi.mathnet.ru/tmf3466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=456096}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 3
\pages 1084--1090
\crossref{https://doi.org/10.1007/BF01028230}
Linking options:
  • https://www.mathnet.ru/eng/tmf3466
  • https://www.mathnet.ru/eng/tmf/v29/i3/p300
  • This publication is cited in the following 24 articles:
    1. Ostanina V M. Tomasi-Vshivtseva P.A., “Quantization of Nonlinear Fields Using Bogolyubov Variables”, Phys. Part. Nuclei Lett., 18:6 (2021), 648–651  crossref  isi
    2. K. A. Sveshnikov, “Nonclassical analogs of solitons in quantum field theory”, Theoret. and Math. Phys., 94:1 (1993), 39–47  mathnet  crossref  mathscinet  zmath  isi
    3. K. Sveshnikov, “Non-classical solitons”, Physics Letters B, 313:1-2 (1993), 96  crossref
    4. A. V. Shurgaia, “Covariant Quantization of a Field Theory with Particle-like Solutions”, Fortschr. Phys., 41:6 (1993), 553  crossref
    5. A. V. Shurgaia, “Covariant Quantization of a Field Theory with Particle-like Solutions”, Fortschr. Phys., 41:6 (1993), 553  crossref
    6. Theoret. and Math. Phys., 93:3 (1992), 1345–1360  mathnet  crossref  isi
    7. A. A. Torotadze, A. V. Shurgaya, “Two-dimensional model of the interaction of a nonrelativistic particle with scalar mesons in the strong-coupling limit”, Theoret. and Math. Phys., 76:2 (1988), 826–833  mathnet  crossref  isi
    8. V. B. Tverskoi, “Heisenberg fields in the neighborhood of a classical solution”, Theoret. and Math. Phys., 68:3 (1986), 866–873  mathnet  crossref  mathscinet  isi
    9. S. I. Zlatev, V. A. Matveev, “The problem of infrared divergences in soliton quantization”, Theoret. and Math. Phys., 62:1 (1985), 31–42  mathnet  crossref  isi
    10. V. B. Tverskoi, “Scattering of solitons by quantum excitations”, Theoret. and Math. Phys., 59:2 (1984), 452–458  mathnet  crossref  mathscinet  isi
    11. A. E. Dorokhov, “Covariant quantization of the bag model”, Theoret. and Math. Phys., 61:1 (1984), 998–1012  mathnet  crossref  mathscinet  isi
    12. D. V. Meshcheryakov, “A generalization of the model with $\Phi^4$ interaction”, Theoret. and Math. Phys., 61:3 (1984), 1205–1211  mathnet  crossref  mathscinet  isi
    13. V. G. Bornyakov, O. D. Timofeevskaya, “Bogolyubov transformation in the Lee model”, Theoret. and Math. Phys., 55:2 (1983), 451–458  mathnet  crossref  mathscinet  isi
    14. K. A. Sveshnikov, “Covariant perturbation theory in the neighborhood of a classical solution”, Theoret. and Math. Phys., 55:3 (1983), 553–568  mathnet  crossref  mathscinet  isi
    15. A. V. Shurgaya, “The method of collective variables in relativistic theory”, Theoret. and Math. Phys., 57:3 (1983), 1216–1225  mathnet  crossref  isi
    16. S. I. Zlatev, V. A. Matveev, G. A. Chechelashvili, “The problem of zero-frequency modes in the quantum theory of solitons”, Theoret. and Math. Phys., 50:3 (1982), 211–217  mathnet  crossref  mathscinet  isi
    17. V. G. Bornyakov, “Strong coupling method in a symmetric scalar theory with two sources”, Theoret. and Math. Phys., 51:2 (1982), 476–483  mathnet  crossref  isi
    18. A. V. Shurgaya, “The method of collective variables and the generalized Hamiltonian formalism”, Theoret. and Math. Phys., 45:1 (1980), 873–879  mathnet  crossref  mathscinet  isi
    19. O.A. Khrustalev, A.V. Razumov, A.Yu. Taranov, “Collective coordinate method in the canonical formalism: Bogolubov's transformation”, Nuclear Physics B, 172 (1980), 44  crossref
    20. B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov, “Solitons in some geometrical field theories”, Theoret. and Math. Phys., 40:1 (1979), 572–581  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :141
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025