Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 55, Number 3, Pages 361–384 (Mi tmf2175)  

This article is cited in 23 scientific papers (total in 23 papers)

Covariant perturbation theory in the neighborhood of a classical solution

K. A. Sveshnikov
References:
Abstract: A manifestly covariant procedure for canonical quantization in the neighborhood of classical solutions of soliton type is proposed on the basis of a Bogolyubov transformation.
Received: 18.06.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 55, Issue 3, Pages 553–568
DOI: https://doi.org/10.1007/BF01015166
Bibliographic databases:
Language: Russian
Citation: K. A. Sveshnikov, “Covariant perturbation theory in the neighborhood of a classical solution”, TMF, 55:3 (1983), 361–384; Theoret. and Math. Phys., 55:3 (1983), 553–568
Citation in format AMSBIB
\Bibitem{Sve83}
\by K.~A.~Sveshnikov
\paper Covariant perturbation theory in the neighborhood of a~classical solution
\jour TMF
\yr 1983
\vol 55
\issue 3
\pages 361--384
\mathnet{http://mi.mathnet.ru/tmf2175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=711003}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 55
\issue 3
\pages 553--568
\crossref{https://doi.org/10.1007/BF01015166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RV89200004}
Linking options:
  • https://www.mathnet.ru/eng/tmf2175
  • https://www.mathnet.ru/eng/tmf/v55/i3/p361
  • This publication is cited in the following 23 articles:
    1. A. V. SHURGAIA, H. J. W. MÜLLER-KIRSTEN, “SPACE SYMMETRIES AND QUANTUM BEHAVIOR OF FINITE ENERGY CONFIGURATIONS IN SU(2)-GAUGE THEORY”, Int. J. Mod. Phys. A, 22:21 (2007), 3655  crossref
    2. E. Yu. Spirina, O. A. Khrustalev, M. V. Chichikina, “Nonstationary polaron”, Theoret. and Math. Phys., 122:3 (2000), 347–354  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. O. A. Khrustalev, M. V. Chichikina, “Bogoliubov group variables in the relativistic quantum field theory”, Theoret. and Math. Phys., 111:2 (1997), 583–591  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. K. A. Sveshnikov, P. K. Silaev, “Connection between discontinuous step-like and smooth kink-type classical solutions in quantum field theory”, Theoret. and Math. Phys., 108:2 (1996), 1019–1045  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. K. A. Sveshnikov, “Nonclassical analogs of solitons in quantum field theory”, Theoret. and Math. Phys., 94:1 (1993), 39–47  mathnet  crossref  mathscinet  zmath  isi
    6. K. Sveshnikov, “Non-classical solitons”, Physics Letters B, 313:1-2 (1993), 96  crossref
    7. A. V. Shurgaia, “Covariant Quantization of a Field Theory with Particle-like Solutions”, Fortschr. Phys., 41:6 (1993), 553  crossref
    8. A. V. Shurgaia, “Covariant Quantization of a Field Theory with Particle-like Solutions”, Fortschr. Phys., 41:6 (1993), 553  crossref
    9. Konstantin Sveshnikov, “Quantum reduplication of classical solitons”, Nuclear Physics B, 405:2-3 (1993), 451  crossref
    10. Theoret. and Math. Phys., 93:3 (1992), 1345–1360  mathnet  crossref  isi
    11. K. A. Sveshnikov, “Finite-difference effects in quantum field theory and quantization of classical solutions”, Theoret. and Math. Phys., 82:1 (1990), 37–45  mathnet  crossref  mathscinet  isi
    12. K.A. Sveshnikov, “Finite-difference effects in quantum field theory and quantization of classical solutions”, Physics Letters A, 136:1-2 (1989), 1  crossref
    13. K. A. Sveshnikov, “Quantization in the neighborhood of a classical solution in the theory of a Fermi field”, Theoret. and Math. Phys., 75:2 (1988), 482–487  mathnet  crossref  isi
    14. K. A. Sveshnikov, “Aspects of perturbation theory in the neighborhood of a classical particle-like solution”, Theoret. and Math. Phys., 76:3 (1988), 911–919  mathnet  crossref  isi
    15. K. A. Sveshnikov, “Quantium dynamics of an extended object in Bogolyubov's group variables”, Theoret. and Math. Phys., 74:3 (1988), 251–264  mathnet  crossref  mathscinet  isi
    16. K.A. Sveshnikov, “Fermionic and bosonic scattering phases on a topological kink”, Physics Letters A, 134:1 (1988), 47  crossref
    17. K.A. Sveshnikov, “Catalysis of quantum processes and recoil effects in the interaction of an extended object with (quantized) radiation field”, Physics Letters A, 126:8-9 (1988), 507  crossref
    18. A. E. Dorokhov, “Covariant quantization in models of extended objects”, Theoret. and Math. Phys., 70:1 (1987), 35–42  mathnet  crossref  isi
    19. V. B. Tverskoi, “Higher orders of perturbation theory in the neighborhood of a classical solution”, Theoret. and Math. Phys., 70:2 (1987), 152–157  mathnet  crossref  isi
    20. K. A. Sveshnikov, V. B. Tverskoi, “Quantization of a soliton solution in a (3+1)-dimensional model of a scalar field with self-interaction involving derivatives”, Theoret. and Math. Phys., 72:3 (1987), 935–940  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :172
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025