Abstract:
Exact solutions are found for the equations of motion of a charged relativistic
particle with arbitrary spin in a Coulomb field and in the field of a plane electromagnetic wave.
Citation:
A. G. Nikitin, “Relativistic particle of arbitrary spin in a Coulomb field and the field of a plane electromagnetic wave”, TMF, 57:2 (1983), 257–264; Theoret. and Math. Phys., 57:2 (1983), 1123–1128
\Bibitem{Nik83}
\by A.~G.~Nikitin
\paper Relativistic particle of arbitrary spin in a~Coulomb field and the field of a~plane electromagnetic wave
\jour TMF
\yr 1983
\vol 57
\issue 2
\pages 257--264
\mathnet{http://mi.mathnet.ru/tmf2259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=734887}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 2
\pages 1123--1128
\crossref{https://doi.org/10.1007/BF01018656}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SX71000009}
Linking options:
https://www.mathnet.ru/eng/tmf2259
https://www.mathnet.ru/eng/tmf/v57/i2/p257
This publication is cited in the following 4 articles:
J. Niederle, A. G. Nikitin, “Relativistic wave equations for interacting, massive particles with arbitrary half-integer spins”, Phys. Rev. D, 64:12 (2001)
V. G. Zima, S. A. Fedoruk, “Covariant quantization of d=4d=4 Brink–Schwarz superparticle with using of Lorentz harmonics”, Theoret. and Math. Phys., 102:3 (1995), 305–322
W. I. Fushchich, A. G. Nikitin, W. M. Susloparow, “Relativistic particle of arbitrary spin in the Coulomb and magnetic-monopole field”, Nuov Cim A, 87:4 (1985), 415
W. I. Fushchich, A. G. Nikitin, “On one- and two-particle Galilei-invariant wave equations for any spin”, Nuov Cim A, 81:3 (1984), 644