Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 102, Number 3, Pages 420–445 (Mi tmf1277)  

This article is cited in 15 scientific papers (total in 15 papers)

Covariant quantization of d=4 Brink–Schwarz superparticle with using of Lorentz harmonics

V. G. Zima, S. A. Fedoruk

Kharkiv State University
References:
Abstract: Covariant first and second quantizations of the free d=4 massless superparticle are implemented with the introduction of purely gauge auxiliary spinor Lorentz harmonics. It is shown that the general solution of the condition of masslessness is a sum of two independent chiral superfields with each of them corresponding to finite superspin. A translationally covariant, in general bijective correspondence between harmonic and massless superfields is constructed. By calculation of the commutation function it is shown that in the considered approach only harmonic fields with the correct connection between spin and statistics and with integer negative homogeneity index satisfy the microcausality condition. It is emphasized that the harmonic fields that arise are reducible at integer points. The index spinor technique is used to describe infinite-component fields of finite spin; the equations of motion of such fields are obtained, and for them Weinberg's theorem on the connection between massless helicity particles and the type of nongauge field that describes them is generalized.
Received: 28.04.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 102, Issue 3, Pages 305–322
DOI: https://doi.org/10.1007/BF01017881
Bibliographic databases:
Language: Russian
Citation: V. G. Zima, S. A. Fedoruk, “Covariant quantization of d=4 Brink–Schwarz superparticle with using of Lorentz harmonics”, TMF, 102:3 (1995), 420–445; Theoret. and Math. Phys., 102:3 (1995), 305–322
Citation in format AMSBIB
\Bibitem{ZimFed95}
\by V.~G.~Zima, S.~A.~Fedoruk
\paper Covariant quantization of $d=4$ Brink--Schwarz superparticle with using of Lorentz harmonics
\jour TMF
\yr 1995
\vol 102
\issue 3
\pages 420--445
\mathnet{http://mi.mathnet.ru/tmf1277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348852}
\zmath{https://zbmath.org/?q=an:0852.53065}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 102
\issue 3
\pages 305--322
\crossref{https://doi.org/10.1007/BF01017881}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ02000009}
Linking options:
  • https://www.mathnet.ru/eng/tmf1277
  • https://www.mathnet.ru/eng/tmf/v102/i3/p420
  • This publication is cited in the following 15 articles:
    1. Igor A. Bandos, Dmitri P. Sorokin, Handbook of Quantum Gravity, 2024, 1  crossref
    2. Igor Bandos, Unai D. M. Sarraga, “Towards field theory of multiple D0-branes. Hamiltonian mechanics and quantization of simplest 3D prototype of multiple D0-brane system”, J. High Energ. Phys., 2024:10 (2024)  crossref
    3. Igor A. Bandos, Dmitri P. Sorokin, Handbook of Quantum Gravity, 2024, 2329  crossref
    4. I. L. Buchbinder, A. P. Isaev, M. A. Podoynitsyin, S. A. Fedoruk, “Generalization of the Bargmann–Wigner construction for infinite-spin fields”, Theoret. and Math. Phys., 216:1 (2023), 973–999  mathnet  crossref  crossref  mathscinet  adsnasa
    5. I. L. Buchbinder, A. P. Isaev, M. A. Podoinitsyn, S. A. Fedoruk, “Generalized Wigner Operators and Relativistic Gauge Fields”, Phys. Part. Nuclei Lett., 20:4 (2023), 605  crossref
    6. Ponomarev D., “3D Conformal Fields With Manifest Sl(2, C)”, J. High Energy Phys., 2021, no. 6, 055  crossref  isi
    7. Buchbinder I.L., Fedoruk S., Isaev A.P., Rusnak A., “Model of Massless Relativistic Particle With Continuous Spin and Its Twistorial Description”, J. High Energy Phys., 2018, no. 7, 031  crossref  mathscinet  isi  scopus
    8. Igor Bandos, M. Sabido, “Hamiltonian approach and quantization of D = 3,N=1 supersymmetric non-Abelian multiwave system”, J. High Energ. Phys., 2018:9 (2018)  crossref
    9. J. A. de Azcárraga, S. Fedoruk, J. M. Izquierdo, J. Lukierski, “Two-twistor particle models and free massive higher spin fields”, J. High Energ. Phys., 2015:4 (2015)  crossref
    10. Igor A. Bandos, “D=11massless superparticle covariant quantization, pure spinor BRST charge and hidden symmetries”, Nuclear Physics B, 796:1-2 (2008), 360  crossref
    11. Igor A. Bandos, “Spinor moving frame, M0-brane covariant BRST quantization and intrinsic complexity of the pure spinor approach”, Physics Letters B, 659:1-2 (2008), 388  crossref
    12. Mikhail Plyushchay, Dmitri Sorokin, Mirian Tsulaia, “Higher spins from tensorial charges and OSp(N|2n) symmetry”, J. High Energy Phys., 2003:04 (2003), 013  crossref
    13. S Fedoruk, V.G Zima, “Uniform twistor-like formulation of massive and massless superparticles with tensorial central charges”, Nuclear Physics B - Proceedings Supplements, 102-103 (2001), 233  crossref
    14. Igor Bandos, Jerzy Lukierski, Dmitri Sorokin, “Superparticle models with tensorial central charges”, Phys. Rev. D, 61:4 (2000)  crossref
    15. V G Zima, S O Fedoruk, “Weinberg propagator of a free massive particle with an arbitrary spin from the BFV-BRST path integral”, Class. Quantum Grav., 16:11 (1999), 3653  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:494
    Full-text PDF :180
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025