Abstract:
We study asymptotic properties of the discrete spectrum of the Schrodinger operator perturbed by a narrowly supported potential. The first terms of the asymptotic expansions in the small parameter equal to the width of the support of the potential are constructed for the eigenvalues and the corresponding eigenfunctions.
Citation:
A. R. Bikmetov, D. I. Borisov, “Discrete Spectrum of the Schrodinger Operator Perturbed by a Narrowly Supported Potential”, TMF, 145:3 (2005), 372–384; Theoret. and Math. Phys., 145:3 (2005), 1691–1702
\Bibitem{BikBor05}
\by A.~R.~Bikmetov, D.~I.~Borisov
\paper Discrete Spectrum of the Schrodinger Operator Perturbed by a Narrowly Supported Potential
\jour TMF
\yr 2005
\vol 145
\issue 3
\pages 372--384
\mathnet{http://mi.mathnet.ru/tmf1906}
\crossref{https://doi.org/10.4213/tmf1906}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243438}
\zmath{https://zbmath.org/?q=an:1178.35144}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...145.1691B}
\elib{https://elibrary.ru/item.asp?id=17703467}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 145
\issue 3
\pages 1691--1702
\crossref{https://doi.org/10.1007/s11232-005-0191-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234453700005}
\elib{https://elibrary.ru/item.asp?id=13498198}
Linking options:
https://www.mathnet.ru/eng/tmf1906
https://doi.org/10.4213/tmf1906
https://www.mathnet.ru/eng/tmf/v145/i3/p372
This publication is cited in the following 3 articles:
D.I. Borisov, R. Kh. Karimov, T. F. Sharapov, “Initial length scale estimate for waveguides with some random singular potentials”, Ufa Math. J., 7:2 (2015), 33–54
A. R. Bikmetov, T. R. Gadyl'shin, I. Kh. Khusnullin, “Perturbation by Slender Potential of Operators Associated with Sectorial Forms”, J Math Sci, 198:6 (2014), 677
I. Kh. Khusnullin, “A perturbed boundary eigenvalue problem for the Schrödinger operator on an interval”, Comput. Math. Math. Phys., 50:4 (2010), 646–664