Abstract:
A perturbed two-parameter boundary value problem is considered for a second-order differential operator on an interval with Dirichlet conditions. The perturbation is described by the potential μ−1V((x−x0)ε−1), where 0<ε≪1 and μ is an arbitrary parameter such that there exists δ>0 for which ε/μ=o(εδ). It is shown that the eigenvalues of this operator converge, as ε→0, to the eigenvalues of the operator with no potential. Complete asymptotic expansions of the eigenvalues and eigenfunctions of the perturbed operator are constructed.
\Bibitem{Khu10}
\by I.~Kh.~Khusnullin
\paper A perturbed boundary eigenvalue problem for the Schr\"odinger operator on an interval
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 4
\pages 679--698
\mathnet{http://mi.mathnet.ru/zvmmf4861}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2761705}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..646K}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 4
\pages 646--664
\crossref{https://doi.org/10.1134/S096554251004007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277337600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952190360}
Linking options:
https://www.mathnet.ru/eng/zvmmf4861
https://www.mathnet.ru/eng/zvmmf/v50/i4/p679
This publication is cited in the following 7 articles:
A. R. Bikmetov, I. Kh. Khusnullin, “Perturbation of Hill operator by narrow potentials”, Russian Math. (Iz. VUZ), 61:7 (2017), 1–10
A. R. Bikmetov, V. F. Vil'danova, I. Kh. Khusnullin, “On perturbation of a Schrödinger operator on axis by narrow potentials”, Ufa Math. J., 7:4 (2015), 24–31
A. R. Bikmetov, T. R. Gadyl'shin, I. Kh. Khusnullin, “Perturbation by Slender Potential of Operators Associated with Sectorial Forms”, J Math Sci, 198:6 (2014), 677
R. R. Gadyl'shin, I. Kh. Khusnullin, “Perturbation of a periodic operator by a narrow potential”, Theoret. and Math. Phys., 173:1 (2012), 1438–1444
A. R. Bikmetov, R. R. Gadylshin, “Vozmuschenie ellipticheskogo operatora uzkim potentsialom v n-mernoi oblasti”, Ufimsk. matem. zhurn., 4:2 (2012), 28–64
R. R. Gadylshin, I. Kh. Khusnullin, “Vozmuschenie operatora Shredingera uzkim potentsialom”, Ufimsk. matem. zhurn., 3:3 (2011), 55–66
R. R. Gadyl'shin, I. Kh. Khusnullin, “Schrödinger operator on the axis with potentials depending on two parameters”, St. Petersburg Math. J., 22:6 (2011), 883–894