Processing math: 100%
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 4, Pages 679–698 (Mi zvmmf4861)  

This article is cited in 7 scientific papers (total in 7 papers)

A perturbed boundary eigenvalue problem for the Schrödinger operator on an interval

I. Kh. Khusnullin

Bashkir State Pedagogical University, ul. Oktyabr'skoi revolyutsii 3a, Ufa, 450000 Bashkortostan, Russia
Full-text PDF (360 kB) Citations (7)
References:
Abstract: A perturbed two-parameter boundary value problem is considered for a second-order differential operator on an interval with Dirichlet conditions. The perturbation is described by the potential μ1V((xx0)ε1), where 0<ε1 and μ is an arbitrary parameter such that there exists δ>0 for which ε/μ=o(εδ). It is shown that the eigenvalues of this operator converge, as ε0, to the eigenvalues of the operator with no potential. Complete asymptotic expansions of the eigenvalues and eigenfunctions of the perturbed operator are constructed.
Key words: second-order differential operator, singular perturbation, eigenvalue, asymptotics.
Received: 10.09.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 4, Pages 646–664
DOI: https://doi.org/10.1134/S096554251004007X
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: I. Kh. Khusnullin, “A perturbed boundary eigenvalue problem for the Schrödinger operator on an interval”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010), 679–698; Comput. Math. Math. Phys., 50:4 (2010), 646–664
Citation in format AMSBIB
\Bibitem{Khu10}
\by I.~Kh.~Khusnullin
\paper A perturbed boundary eigenvalue problem for the Schr\"odinger operator on an interval
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 4
\pages 679--698
\mathnet{http://mi.mathnet.ru/zvmmf4861}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2761705}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..646K}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 4
\pages 646--664
\crossref{https://doi.org/10.1134/S096554251004007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277337600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952190360}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4861
  • https://www.mathnet.ru/eng/zvmmf/v50/i4/p679
  • This publication is cited in the following 7 articles:
    1. A. R. Bikmetov, I. Kh. Khusnullin, “Perturbation of Hill operator by narrow potentials”, Russian Math. (Iz. VUZ), 61:7 (2017), 1–10  mathnet  crossref  isi
    2. A. R. Bikmetov, V. F. Vil'danova, I. Kh. Khusnullin, “On perturbation of a Schrödinger operator on axis by narrow potentials”, Ufa Math. J., 7:4 (2015), 24–31  mathnet  crossref  isi  elib
    3. A. R. Bikmetov, T. R. Gadyl'shin, I. Kh. Khusnullin, “Perturbation by Slender Potential of Operators Associated with Sectorial Forms”, J Math Sci, 198:6 (2014), 677  crossref
    4. R. R. Gadyl'shin, I. Kh. Khusnullin, “Perturbation of a periodic operator by a narrow potential”, Theoret. and Math. Phys., 173:1 (2012), 1438–1444  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    5. A. R. Bikmetov, R. R. Gadylshin, “Vozmuschenie ellipticheskogo operatora uzkim potentsialom v n-mernoi oblasti”, Ufimsk. matem. zhurn., 4:2 (2012), 28–64  mathnet  mathscinet
    6. R. R. Gadylshin, I. Kh. Khusnullin, “Vozmuschenie operatora Shredingera uzkim potentsialom”, Ufimsk. matem. zhurn., 3:3 (2011), 55–66  mathnet  zmath
    7. R. R. Gadyl'shin, I. Kh. Khusnullin, “Schrödinger operator on the axis with potentials depending on two parameters”, St. Petersburg Math. J., 22:6 (2011), 883–894  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:520
    Full-text PDF :135
    References:90
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025