Abstract:
The problem of metrizability for the dynamical systems accepting the normal shift is formulated and solved. The explicit formula for the force-field of metrizable newtonian dynamical system ∂ttr=F(r,∂tr) is found.
Citation:
R. A. Sharipov, “The problem of metrizability of dynamical systems that admit normal shift”, TMF, 101:1 (1994), 85–93; Theoret. and Math. Phys., 101:1 (1994), 1218–1223
\Bibitem{Sha94}
\by R.~A.~Sharipov
\paper The problem of metrizability of dynamical systems that admit normal shift
\jour TMF
\yr 1994
\vol 101
\issue 1
\pages 85--93
\mathnet{http://mi.mathnet.ru/tmf1671}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348142}
\zmath{https://zbmath.org/?q=an:0854.58036}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 101
\issue 1
\pages 1218--1223
\crossref{https://doi.org/10.1007/BF01079259}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QT57100008}
Linking options:
https://www.mathnet.ru/eng/tmf1671
https://www.mathnet.ru/eng/tmf/v101/i1/p85
This publication is cited in the following 5 articles:
R. A. Sharipov, “Dynamic Systems Admitting the Normal Shift and Wave Equations”, Theoret. and Math. Phys., 131:2 (2002), 651–665
R. A. Sharipov, “Newtonian normal shift in multidimensional Riemannian geometry”, Sb. Math., 192:6 (2001), 895–932
A. Yu. Boldin, V. V. Dmitrieva, S. S. Safin, R. A. Sharipov, “Dynamical systems on a Riemannian manifold that admit normal shift”, Theoret. and Math. Phys., 103:2 (1995), 543–549
A. Yu. Boldin, A. A. Bronnikov, V. V. Dmitrieva, R. A. Sharipov, “Complete normality conditions for the dynamical systems on Riemannian manifolds”, Theoret. and Math. Phys., 103:2 (1995), 550–555
R. A. Sharipov, “Metrizability of dynamical systems by a conformally equivalent metric”, Theoret. and Math. Phys., 103:2 (1995), 556–560