Abstract:
New equations that transform the previously found conditions of weak normality into conditions of complete normality are established for Newtonian dynamical systems on Riemannian manifolds.
Citation:
A. Yu. Boldin, A. A. Bronnikov, V. V. Dmitrieva, R. A. Sharipov, “Complete normality conditions for the dynamical systems on Riemannian manifolds”, TMF, 103:2 (1995), 267–275; Theoret. and Math. Phys., 103:2 (1995), 550–555
\Bibitem{BolBroDmi95}
\by A.~Yu.~Boldin, A.~A.~Bronnikov, V.~V.~Dmitrieva, R.~A.~Sharipov
\paper Complete normality conditions for the dynamical systems on Riemannian manifolds
\jour TMF
\yr 1995
\vol 103
\issue 2
\pages 267--275
\mathnet{http://mi.mathnet.ru/tmf1301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470947}
\zmath{https://zbmath.org/?q=an:0852.58030}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 2
\pages 550--555
\crossref{https://doi.org/10.1007/BF02274032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TD56100007}
Linking options:
https://www.mathnet.ru/eng/tmf1301
https://www.mathnet.ru/eng/tmf/v103/i2/p267
This publication is cited in the following 5 articles:
Linyu Peng, Huafei Sun, Xiao Sun, “Geometry of Hamiltonian Dynamics with Conformal Eisenhart Metric”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 1
R. A. Sharipov, “Dynamic Systems Admitting the Normal Shift and Wave Equations”, Theoret. and Math. Phys., 131:2 (2002), 651–665
R. A. Sharipov, “Newtonian normal shift in multidimensional Riemannian geometry”, Sb. Math., 192:6 (2001), 895–932
E. V. Ferapontov, R. A. Sharipov, “On first-order conservation laws for systems of hydronamic type equations”, Theoret. and Math. Phys., 108:1 (1996), 937–952
R. A. Sharipov, “Metrizability of dynamical systems by a conformally equivalent metric”, Theoret. and Math. Phys., 103:2 (1995), 556–560