Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 100, Number 1, Pages 119–131 (Mi tmf1634)  

This article is cited in 27 scientific papers (total in 27 papers)

On a c-number quantum τ-function

A. D. Mironov, A. Yu. Morozov, L. Vinet
References:
Abstract: We first review the properties of the conventional τ-functions of the KP and Toda-lattice hierarchies. A straightforward generalization is then discussed. It corresponds to passing from differential to finite-difference equations; it does not involve however the concept of operator-valued τ-function nor the one associated with non-Cartanian (level k1) algebras. The present study could be useful to understand better q-free fields and their relation to ordinary free fields.
English version:
Theoretical and Mathematical Physics, 1994, Volume 100, Issue 1, Pages 890–899
DOI: https://doi.org/10.1007/BF01017328
Bibliographic databases:
Language: Russian
Citation: A. D. Mironov, A. Yu. Morozov, L. Vinet, “On a c-number quantum τ-function”, TMF, 100:1 (1994), 119–131; Theoret. and Math. Phys., 100:1 (1994), 890–899
Citation in format AMSBIB
\Bibitem{MirMorVin94}
\by A.~D.~Mironov, A.~Yu.~Morozov, L.~Vinet
\paper On a $c$-number quantum $\tau $-function
\jour TMF
\yr 1994
\vol 100
\issue 1
\pages 119--131
\mathnet{http://mi.mathnet.ru/tmf1634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1305794}
\zmath{https://zbmath.org/?q=an:0875.35091}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 100
\issue 1
\pages 890--899
\crossref{https://doi.org/10.1007/BF01017328}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QC09900012}
Linking options:
  • https://www.mathnet.ru/eng/tmf1634
  • https://www.mathnet.ru/eng/tmf/v100/i1/p119
  • This publication is cited in the following 27 articles:
    1. Fei Wang, Min Zhu, Zhaowen Yan, “The Q-deformed SUC, BUC hierarchies and the multi-component generalizations”, Int. J. Geom. Methods Mod. Phys., 21:07 (2024)  crossref
    2. A. Mironov, V. Mishnyakov, A. Morozov, “Tau-functions beyond the group elements”, Nuclear Physics B, 1001 (2024), 116504  crossref
    3. H. Itoyama, A. Mironov, A. Morozov, “From Kronecker to tableau pseudo-characters in tensor models”, Physics Letters B, 788 (2019), 76  crossref
    4. A. Mironov, A. Morozov, Z. Zakirova, “Discrete Painlevé equation, Miwa variables and string equation in 5d matrix models”, J. High Energ. Phys., 2019:10 (2019)  crossref
    5. A. Mironov, A. Morozov, A. Sleptsov, “On 6j-symbols for symmetric representations of Uq(suN)”, JETP Letters, 106:10 (2017), 630–636  mathnet  mathnet  crossref  crossref  isi  scopus
    6. Melnikov D. Mironov A. Morozov A., “On skew tau-functions in higher spin theory”, J. High Energy Phys., 2016, no. 5, 027  crossref  mathscinet  isi  elib  scopus
    7. Mironov A., Morozov A., Shakirov Sh., “Towards a Proof of AGT Conjecture By Methods of Matrix Models”, Internat J Modern Phys A, 27:1 (2012), 1230001  isi
    8. A. MIRONOV, A. MOROZOV, SH. SHAKIROV, “TOWARDS A PROOF OF AGT CONJECTURE BY METHODS OF MATRIX MODELS”, Int. J. Mod. Phys. A, 27:01 (2012), 1230001  crossref
    9. A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, Theoret. and Math. Phys., 166:1 (2011), 1–22  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    10. A. Yu. Morozov, “Unitary integrals and related matrix models”, Theoret. and Math. Phys., 162:1 (2010), 1–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Mironov, A, “Linearized Lorentz-violating gravity and discriminant locus in the moduli space of mass terms”, Journal of Physics A-Mathematical and Theoretical, 43:5 (2010), 055402  crossref  mathscinet  zmath  adsnasa  isi
    12. Mironov, A, “On AGT relation in the case of U (3)”, Nuclear Physics B, 825:1–2 (2010), 1  crossref  mathscinet  adsnasa  isi
    13. Alexandrov, A, “BGWM as second constituent of complex matrix model”, Journal of High Energy Physics, 2009, no. 12, 053  crossref  isi
    14. Mironov, A, “Proving AGT relations in the large-c limit”, Physics Letters B, 682:1 (2009), 118  crossref  mathscinet  adsnasa  isi
    15. Morozov, A, “ON EQUIVALENCE OF TWO HURWITZ MATRIX MODELS”, Modern Physics Letters A, 24:33 (2009), 2659  crossref  mathscinet  zmath  adsnasa  isi
    16. Takasaki, K, “Integrable structure of melting crystal model with two q-parameters”, Journal of Geometry and Physics, 59:9 (2009), 1244  crossref  mathscinet  zmath  adsnasa  isi
    17. Morozov, A, “Generation of matrix models by (W)over-cap-operators”, Journal of High Energy Physics, 2009, no. 4, 064  crossref  isi
    18. A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “M-Theory of Matrix Models”, Theoret. and Math. Phys., 150:2 (2007), 153–164  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Morozov A., “Challenges of matrix models”, String Theory: From Gauge Interactions to Cosmology, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 208, 2006, 129–162  isi
    20. A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model”, Theoret. and Math. Phys., 142:3 (2005), 349–411  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :136
    References:65
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025