Abstract:
We define cut-and-join operators in Hurwitz theory for merging two branch points of an arbitrary type. These operators have two alternative descriptions: (1) the GLGL characters are their eigenfunctions and the symmetric group characters are their eigenvalues; (2) they can be represented as WW-type differential operators (in particular, acting on the time variables in the Hurwitz–Kontsevich ττ-function). The operators have the simplest form when expressed in terms of the Miwa variables. They form an important commutative associative algebra, a universal Hurwitz algebra, generalizing all group algebra centers of particular symmetric groups used to describe the universal Hurwitz numbers of particular orders. This algebra expresses arbitrary Hurwitz numbers as values of a distinguished linear form on the linear space of Young diagrams evaluated on the product of all diagrams characterizing particular ramification points of the branched covering.
Keywords:
matrix model, Hurwitz number, symmetric group character.
Citation:
A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, TMF, 166:1 (2011), 3–27; Theoret. and Math. Phys., 166:1 (2011), 1–22
\Bibitem{MirMorNat11}
\by A.~D.~Mironov, A.~Yu.~Morozov, S.~M.~Natanzon
\paper Complete set of cut-and-join operators in the~Hurwitz--Kontsevich theory
\jour TMF
\yr 2011
\vol 166
\issue 1
\pages 3--27
\mathnet{http://mi.mathnet.ru/tmf6592}
\crossref{https://doi.org/10.4213/tmf6592}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3165775}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166....1M}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 1
\pages 1--22
\crossref{https://doi.org/10.1007/s11232-011-0001-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287245500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951473365}
Linking options:
https://www.mathnet.ru/eng/tmf6592
https://doi.org/10.4213/tmf6592
https://www.mathnet.ru/eng/tmf/v166/i1/p3
This publication is cited in the following 113 articles:
Chuanzhong Li, A. Mironov, A.Yu. Orlov, “Hopf link invariants and integrable hierarchies”, Physics Letters B, 860 (2025), 139170
A. Mironov, A. Morozov, A. Popolitov, “Chalykh's Baker-Akhiezer functions as eigenfunctions of the integer-ray integrable systems”, Nuclear Physics B, 1012 (2025), 116809
A. Mironov, A. Morozov, “On the status of DELL systems”, Nuclear Physics B, 999 (2024), 116448
Ya. Drachov, A. Mironov, A. Popolitov, “W1+∞ and W˜ algebras, and Ward identities”, Physics Letters B, 849 (2024), 138426
Dmitry Galakhov, Alexei Morozov, Nikita Tselousov, “Toward a theory of Yangians”, Phys. Rev. D, 109:6 (2024)
Dmitry Galakhov, Alexei Morozov, Nikita Tselousov, “Simple representations of BPS algebras: the case of $Y(\widehat{\mathfrak {gl}}_2)$”, Eur. Phys. J. C, 84:6 (2024)
A. Mironov, A. Morozov, A. Popolitov, Sh. Shakirov, “Deformation of superintegrability in the Miwa-deformed Gaussian matrix model”, Phys. Rev. D, 110:4 (2024)
A. Morozov, A. Oreshina, “On character expansion and Gaussian regularization of Itzykson-Zuber measure”, Physics Letters B, 857 (2024), 139006
A. Mironov, A. Morozov, A. Popolitov, “Cherednik-Mehta-Macdonald formula as a superintegrability property of a unitary model”, Phys. Rev. D, 110:12 (2024)
A. Yu. Orlov, “Integrals of tau functions: A round dance tau function and multimatrix integrals”, Theoret. and Math. Phys., 215:3 (2023), 784–792
A. Yu. Orlov, “Polygon gluing and commuting bosonic operators”, Theoret. and Math. Phys., 216:2 (2023), 1110–1118
Yaroslav Drachov, Aleksandr Zhabin, “Genus expansion of matrix models and $\hbar $ expansion of BKP hierarchy”, Eur. Phys. J. C, 83:5 (2023)
Na Wang, Can Zhang, Ke Wu, “3D boson representation of affine Yangian of gl(1) and 3D cut-and-join operators”, Journal of Mathematical Physics, 64:11 (2023)
A. Mironov, A. Morozov, “On combinatorial generalization(s) of Borel transform: Averaging method in combinatorics of symmetric polynomials”, Physics Letters B, 843 (2023), 138037
A. Morozov, N. Tselousov, “3-Schurs from explicit representation of Yangian $ \textrm{Y}\left({\hat{\mathfrak{gl}}}_1\right) $. Levels 1–5”, J. High Energ. Phys., 2023:11 (2023)
Dmitry Galakhov, Alexei Morozov, Nikita Tselousov, “Super-Schur polynomials for Affine Super Yangian Y($ \hat{\mathfrak{gl}} $1|1)”, J. High Energ. Phys., 2023:8 (2023)
Yannick Mvondo-She, “From Hurwitz numbers to Feynman diagrams: Counting rooted trees in log gravity”, Nuclear Physics B, 995 (2023), 116350
A. Mironov, A. Morozov, “Many-body integrable systems implied by WLZZ models”, Physics Letters B, 842 (2023), 137964