Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 166, Number 1, Pages 3–27
DOI: https://doi.org/10.4213/tmf6592
(Mi tmf6592)
 

This article is cited in 113 scientific papers (total in 113 papers)

Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory

A. D. Mironovab, A. Yu. Morozovb, S. M. Natanzoncd

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia
c Higher School of Economics, Moscow, Russia
d Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We define cut-and-join operators in Hurwitz theory for merging two branch points of an arbitrary type. These operators have two alternative descriptions: (1) the GLGL characters are their eigenfunctions and the symmetric group characters are their eigenvalues; (2) they can be represented as WW-type differential operators (in particular, acting on the time variables in the Hurwitz–Kontsevich ττ-function). The operators have the simplest form when expressed in terms of the Miwa variables. They form an important commutative associative algebra, a universal Hurwitz algebra, generalizing all group algebra centers of particular symmetric groups used to describe the universal Hurwitz numbers of particular orders. This algebra expresses arbitrary Hurwitz numbers as values of a distinguished linear form on the linear space of Young diagrams evaluated on the product of all diagrams characterizing particular ramification points of the branched covering.
Keywords: matrix model, Hurwitz number, symmetric group character.
Received: 07.06.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 166, Issue 1, Pages 1–22
DOI: https://doi.org/10.1007/s11232-011-0001-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, TMF, 166:1 (2011), 3–27; Theoret. and Math. Phys., 166:1 (2011), 1–22
Citation in format AMSBIB
\Bibitem{MirMorNat11}
\by A.~D.~Mironov, A.~Yu.~Morozov, S.~M.~Natanzon
\paper Complete set of cut-and-join operators in the~Hurwitz--Kontsevich theory
\jour TMF
\yr 2011
\vol 166
\issue 1
\pages 3--27
\mathnet{http://mi.mathnet.ru/tmf6592}
\crossref{https://doi.org/10.4213/tmf6592}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3165775}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166....1M}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 1
\pages 1--22
\crossref{https://doi.org/10.1007/s11232-011-0001-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287245500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951473365}
Linking options:
  • https://www.mathnet.ru/eng/tmf6592
  • https://doi.org/10.4213/tmf6592
  • https://www.mathnet.ru/eng/tmf/v166/i1/p3
  • This publication is cited in the following 113 articles:
    1. Chuanzhong Li, A. Mironov, A.Yu. Orlov, “Hopf link invariants and integrable hierarchies”, Physics Letters B, 860 (2025), 139170  crossref
    2. A. Mironov, A. Morozov, A. Popolitov, “Chalykh's Baker-Akhiezer functions as eigenfunctions of the integer-ray integrable systems”, Nuclear Physics B, 1012 (2025), 116809  crossref
    3. A. Mironov, A. Morozov, “On the status of DELL systems”, Nuclear Physics B, 999 (2024), 116448  crossref
    4. Ya. Drachov, A. Mironov, A. Popolitov, “W1+∞ and W˜ algebras, and Ward identities”, Physics Letters B, 849 (2024), 138426  crossref
    5. Dmitry Galakhov, Alexei Morozov, Nikita Tselousov, “Toward a theory of Yangians”, Phys. Rev. D, 109:6 (2024)  crossref
    6. Dmitry Galakhov, Alexei Morozov, Nikita Tselousov, “Simple representations of BPS algebras: the case of $Y(\widehat{\mathfrak {gl}}_2)$”, Eur. Phys. J. C, 84:6 (2024)  crossref
    7. Dmitry Galakhov, Alexei Morozov, Nikita Tselousov, “Macdonald polynomials for super-partitions”, Physics Letters B, 856 (2024), 138911  crossref
    8. A. Mironov, A. Morozov, A. Popolitov, Sh. Shakirov, “Deformation of superintegrability in the Miwa-deformed Gaussian matrix model”, Phys. Rev. D, 110:4 (2024)  crossref
    9. A. Morozov, A. Oreshina, “On character expansion and Gaussian regularization of Itzykson-Zuber measure”, Physics Letters B, 857 (2024), 139006  crossref
    10. Yaroslav Drachov, “Generalized $\widetilde{W}$ algebras”, Eur. Phys. J. C, 84:10 (2024)  crossref
    11. A. Mironov, A. Morozov, A. Popolitov, “Cherednik-Mehta-Macdonald formula as a superintegrability property of a unitary model”, Phys. Rev. D, 110:12 (2024)  crossref
    12. A. Yu. Orlov, “Integrals of tau functions: A round dance tau function and multimatrix integrals”, Theoret. and Math. Phys., 215:3 (2023), 784–792  mathnet  crossref  crossref  mathscinet  adsnasa
    13. A. Yu. Orlov, “Polygon gluing and commuting bosonic operators”, Theoret. and Math. Phys., 216:2 (2023), 1110–1118  mathnet  crossref  crossref  mathscinet  adsnasa
    14. Yaroslav Drachov, Aleksandr Zhabin, “Genus expansion of matrix models and $\hbar $ expansion of BKP hierarchy”, Eur. Phys. J. C, 83:5 (2023)  crossref
    15. Na Wang, Can Zhang, Ke Wu, “3D boson representation of affine Yangian of gl(1) and 3D cut-and-join operators”, Journal of Mathematical Physics, 64:11 (2023)  crossref
    16. A. Mironov, A. Morozov, “On combinatorial generalization(s) of Borel transform: Averaging method in combinatorics of symmetric polynomials”, Physics Letters B, 843 (2023), 138037  crossref
    17. A. Morozov, N. Tselousov, “3-Schurs from explicit representation of Yangian $ \textrm{Y}\left({\hat{\mathfrak{gl}}}_1\right) $. Levels 1–5”, J. High Energ. Phys., 2023:11 (2023)  crossref
    18. Dmitry Galakhov, Alexei Morozov, Nikita Tselousov, “Super-Schur polynomials for Affine Super Yangian Y($ \hat{\mathfrak{gl}} $1|1)”, J. High Energ. Phys., 2023:8 (2023)  crossref
    19. Yannick Mvondo-She, “From Hurwitz numbers to Feynman diagrams: Counting rooted trees in log gravity”, Nuclear Physics B, 995 (2023), 116350  crossref
    20. A. Mironov, A. Morozov, “Many-body integrable systems implied by WLZZ models”, Physics Letters B, 842 (2023), 137964  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1163
    Full-text PDF :303
    References:99
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025