Abstract:
The paper is devoted to discretization of integral norms of functions from a given finite-dimensional subspace. We use recent general results on sampling discretization to derive a new Marcinkiewicz type discretization theorem for the multivariate trigonometric polynomials with frequencies from the hyperbolic crosses. It is shown that recently developed techniques allow us to improve the known results in this direction.
Citation:
V. N. Temlyakov, “Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 282–293; Proc. Steklov Inst. Math., 312 (2021), 270–281
\Bibitem{Tem21}
\by V.~N.~Temlyakov
\paper Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 282--293
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4133}
\crossref{https://doi.org/10.4213/tm4133}
\elib{https://elibrary.ru/item.asp?id=46045491}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 270--281
\crossref{https://doi.org/10.1134/S0081543821010181}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104615318}
Linking options:
https://www.mathnet.ru/eng/tm4133
https://doi.org/10.4213/tm4133
https://www.mathnet.ru/eng/tm/v312/p282
This publication is cited in the following 7 articles:
Oksana V. Germider, Vasily N. Popov, “On calculation of bending of a thin orthotropic plate using Legendre and Chebyshev polynomials of the first kind”, Zhurn. SFU. Ser. Matem. i fiz., 17:5 (2024), 586–598
F. Dai, V. N. Temlyakov, “Sampling Discretization of Integral Norms and Its Application”, Proc. Steklov Inst. Math., 319 (2022), 97–109
Egor D. Kosov, “Remarks on Sampling Discretization of Integral Norms of Functions”, Proc. Steklov Inst. Math., 319 (2022), 189–199
Vladimir N. Temlyakov, Tino Ullrich, “Approximation of functions with small mixed smoothness in the uniform norm”, J. Approx. Theory, 277 (2022), 105718–23
B. Kashin, E. Kosov, I. Limonova, V. Temlyakov, “Sampling discretization and related problems”, J. Complexity, 71 (2022), 101653–55
Kosov E.D., “Marcinkiewicz-Type Discretization of l-P-Norms Under the Nikolskii-Type Inequality Assumption”, J. Math. Anal. Appl., 504:1 (2021), 125358
Temlyakov V., Ullrich T., “Bounds on Kolmogorov Widths and Sampling Recovery For Classes With Small Mixed Smoothness”, J. Complex., 67 (2021), 101575