Loading [MathJax]/jax/output/CommonHTML/jax.js
Journal of Approximation Theory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Approximation Theory, 2022, Volume 277, Pages 105718–23
DOI: https://doi.org/10.1016/j.jat.2022.105718
(Mi jath9)
 

This article is cited in 9 scientific papers (total in 9 papers)

Approximation of functions with small mixed smoothness in the uniform norm

Vladimir N. Temlyakovabcd, Tino Ullriche

a University of South Carolina, USA
b Steklov Institute of Mathematics, Russia
c Lomonosov Moscow State University, Russia
d Moscow Center for Fundamental and Applied Mathematics, Russia
e Faculty of Mathematics, 09107 Chemnitz, Germany
Citations (9)
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.W03. 31.0031
Deutsche Forschungsgemeinschaft Ul-403/2-1
The first author was supported by the Russian Federation Government Grant No 14.W03. 31.0031. T. U. would like to acknowledge support by the DFG Ul-403/2-1. T. U. also thanks Winfried Sickel and Thomas Kuhn for several discussions on the topic. Last but not least T. U. ¨ would like to thank Kevin Matthes who implemented parts of the manuscript in TeX.
Received: 26.01.2021
Revised: 07.12.2021
Accepted: 18.01.2022
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/jath9
  • This publication is cited in the following 9 articles:
    1. Thomas Jahn, Tino Ullrich, Felix Voigtlaender, “Sampling numbers of smoothness classes via ℓ1-minimization”, Journal of Complexity, 79 (2023), 101786  crossref
    2. Anatolii S. Romanyuk, Serhii Ya. Yanchenko, “Estimates for the entropy numbers of the Nikol'skii–Besov classes of functions with mixed smoothness in the space of quasi‐continuous functions”, Mathematische Nachrichten, 296:6 (2023), 2575  crossref
    3. Matthieu Dolbeault, David Krieg, Mario Ullrich, “A sharp upper bound for sampling numbers in L2”, Applied and Computational Harmonic Analysis, 63 (2023), 113  crossref
    4. Felix Bartel, Martin Schäfer, Tino Ullrich, “Constructive subsampling of finite frames with applications in optimal function recovery”, Applied and Computational Harmonic Analysis, 65 (2023), 209  crossref
    5. Felix Bartel, Lutz Kämmerer, Daniel Potts, Tino Ullrich, “On the reconstruction of functions from values at subsampled quadrature points”, Math. Comp., 93:346 (2023), 785  crossref
    6. Glenn Byrenheid, Serhii Stasyuk, Tino Ullrich, “Lp-Sampling recovery for non-compact subclasses of L∞”, Front. Appl. Math. Stat., 9 (2023)  crossref
    7. Matthieu Dolbeault, David Krieg, Mario Ullrich, “A Sharp Upper Bound for Sampling Numbers in L2”, SSRN Journal, 2022  crossref
    8. Aicke Hinrichs, David Krieg, Erich Novak, Jan Vybíral, “Lower bounds for integration and recovery in L2”, Journal of Complexity, 72 (2022), 101662  crossref
    9. V. K. Nguyen, V. D. Nguyen, “Best n-Term Approximation of Diagonal Operators and Application to Function Spaces with Mixed Smoothness”, Anal Math, 48:4 (2022), 1127  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025