Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 8–42
DOI: https://doi.org/10.1134/S0371968516020023
(Mi tm3702)
 

This article is cited in 9 scientific papers (total in 9 papers)

Nonlinear trigonometric approximations of multivariate function classes

D. B. Bazarkhanov

Institute of Mathematics and Mathematical Modeling, ul. Pushkina 125, Almaty, 050010 Kazakhstan
Full-text PDF (417 kB) Citations (9)
References:
Abstract: Order-sharp estimates are established for the best N-term approximations of functions from Nikol'skii–Besov type classes Bsmpq(Tk) with respect to the multiple trigonometric system T(k) in the metric of Lr(Tk) for a number of relations between the parameters s,p,q,r, and m (s=(s1,,sn)Rn+, 1p,q,r, m=(m1,,mn)Nn, k=m1++mn). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan 5130/ГФ4
5129/ГФ4
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan, project nos. 5130/GF4 and 5129/GF4.
Received: December 2, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 2–36
DOI: https://doi.org/10.1134/S0081543816040027
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 8–42; Proc. Steklov Inst. Math., 293 (2016), 2–36
Citation in format AMSBIB
\Bibitem{Baz16}
\by D.~B.~Bazarkhanov
\paper Nonlinear trigonometric approximations of multivariate function classes
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 8--42
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3702}
\crossref{https://doi.org/10.1134/S0371968516020023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628468}
\elib{https://elibrary.ru/item.asp?id=26344467}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 2--36
\crossref{https://doi.org/10.1134/S0081543816040027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979986923}
Linking options:
  • https://www.mathnet.ru/eng/tm3702
  • https://doi.org/10.1134/S0371968516020023
  • https://www.mathnet.ru/eng/tm/v293/p8
  • This publication is cited in the following 9 articles:
    1. G. Akishev, “Estimates of $M$–term approximations of functions of several variables in the Lorentz space by a constructive method”, Eurasian Math. J., 15:2 (2024), 8–32  mathnet  crossref
    2. G. A. Akishev, “On estimates for orders of best $M$-term approximations of multivariate functions in anisotropic Lorentz–Karamata spaces”, Ufa Math. J., 15:1 (2023), 1–20  mathnet  crossref  mathscinet
    3. G. Akishev, “Ob otsenkakh poryadka nailuchshikh $M$-chlennykh priblizhenii funktsii mnogikh peremennykh v anizotropnom prostranstve Lorentsa – Zigmunda”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 23:2 (2023), 142–156  mathnet  crossref
    4. G. A. Akishev, “O poryadkakh $n$-chlennykh priblizhenii funktsii mnogikh peremennykh v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 3–19  mathnet  crossref
    5. V. K. Nguyen, V. D. Nguyen, “Best n-Term Approximation of Diagonal Operators and Application to Function Spaces with Mixed Smoothness”, Anal Math, 48:4 (2022), 1127  crossref
    6. G. Akishev, A. Myrzagaliyeva, “ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE”, J Math Sci, 266:6 (2022), 870  crossref
    7. S. A. Stasyuk, “Razrezhennoe trigonometricheskoe priblizhenie klassov Besova funktsii s maloi smeshannoi gladkostyu”, Tr. IMM UrO RAN, 23, no. 3, 2017, 244–252  mathnet  crossref  elib
    8. D. B. Bazarkhanov, “Sparse approximation of some function classes with respect to multiple Haar system on the unit cube”, International Conference Functional Analysis In Interdisciplinary Applications (FAIA 2017), AIP Conf. Proc., 1880, eds. T. Kalmenov, M. Sadybekov, Amer. Inst. Phys., 2017, UNSP 030017  crossref  mathscinet  isi  scopus
    9. S. A. Stasyuk, “Konstruktivnye razrezhennye trigonometricheskie priblizheniya dlya klassov funktsii s nebolshoi smeshannoi gladkostyu”, Tr. IMM UrO RAN, 22, no. 4, 2016, 247–253  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :81
    References:101
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025